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ABSTRACT

The large majority of electrical power in the United States today is
generated from fossil feedstocks. While renewable energy sources
offer compelling alternatives, there are many challenges and com-
plexities that currently limit their use. The high-level objective of
our work is to create an analytic framework to provide decision sup-
port for renewable energy use in electrical power generation in the
US. For security reasons, many of the details of the infrastructure
that would facilitate our work are not openly available. Thus, we
seek to infer key properties of the power generation and transmis-
sion infrastructures, using alternative data sources and recognizing
that grid dynamics are constrained by federal regulation and the
laws of physics. In this discussion paper we describe the design
space for our study and our initial analyses of energy pricing data.
These data are openly available from Regional Transmission Orga-
nizations and Independent System Operators. Our results highlight
the complexities and dynamics of the relationships between loca-
tions in the power grid, and set the stage for inferring physical and
behavioral properties of the power grid.
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1.6.5 [Model Development]: Modeling methodologies

General Terms
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1. INTRODUCTION

Fossil fuel-based electrical power generation poses risks to cli-
mate, environment and health, but fossil sources such as coal and
natural gas are still the primary feedstocks for power generation
in the United States. Renewable sources of energy such as solar,
wind, and biomass feedstocks offer compelling alternatives to fos-
sil fuels as they can lower net greenhouse emissions and help to
alleviate our dependence on foreign fuels. Over the past decade,
significant efforts in academia, industry and government have at-
tempted to overcome the impediments to renewable energy use. An
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important example is the renewable portfolio standards (RPS) that
require electricity producers to generate a minimum percentage of
power from renewable sources by specified dates [7]. RPS have
been adopted in 24 states. However, from the perspective of power
producers, utilizing renewable energy sources complicates business
processes.

The goal of our work is to develop analytic capabilities that clar-
ify our understanding of the electrical power ecosystem and pro-
vide decision support for power producers, including when, where
and how renewable energy sources should be used for electricity
production. We seek answers to questions such as (1) what are the
characteristics and behaviors of the electrical generation and trans-
mission infrastructure?, (2) what are the relative cost implications
for the use of sustainable energy sources in local and regional mar-
kets?, and (3) where and how might infrastructure changes make
renewable energy use more attractive? The challenges in this ef-
fort stem from the scale, complexity and dynamics of the electrical
power ecosystem and from the fact that many aspects of the phys-
ical infrastructure are obfuscated for business or national security
reasons.

In this discussion paper, we describe our initial efforts to charac-
terize power generation and transmission infrastructure in the US.
We use openly available energy pricing data (from Regional Trans-
mission Organizations and Independent Transmission System Op-
erators that manage regional energy markets) to infer properties of
the infrastructure. Our hypothesis is that this data will indirectly
reflect both operating norms and physical constraints of the infras-
tructure. To investigate this hypothesis, our tasks are to (i) specify
and evaluate models for behavior of the infrastructure, and (ii) val-
idate and enhance our analyses with additional data sets. Here, we
use real-time energy pricing in the midwest US market to exam-
ine the time-variations and relative prices between power produc-
ers and thus identify certain properties of the grid infrastructure.
Preliminary results of our analysis reveal that the pricing landscape
is a dynamic entity that changes dramatically over the course of a
day. We also find unanticipated phenomena related to the physical
grid that will be explored more fully in future work.

2. RELATED WORK

Our work relates most closely to three main areas of prior study;
the geometry of the power grid, distributed generation (DG) place-
ment, and machine learning (ML) techniques used to investigate
the power grid.

Electricity market models and simulators are widely used for
analysis and forecasting [2]. These models project bidding strate-
gies based, among other things, on characteristics of the trans-
mission network and estimated loads. Previous work explores the
topology of the electric grid in terms of both geographical and
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Figure 1: Synthetically generated example Z(") matrices. If the
LMP landscape changes gradually until noon, and then returns
to its midnight configuration, Z() would look much like (a). If
instead the landscape changes smoothly, but more quickly at
night than during the day, we see a matrix more similar to (b).
Subfigure (c) shows a peak at 6:00PM rather than noon, and
(d) shows peaks at 7:00AM and 8:00PM (and a local minimum
at 10:30AM).

electrical connections (see [5] and the references therein). Our
work can potentially improve the capabilities of forecasting models
by providing a more detailed and accurate characterization of the
grid’s electrical structure.

Placing small-scale power generation facilities at locations near
areas that would otherwise be difficult to serve (i.e., Distributed

Generation (DG) placement) is becoming increasingly important [1].

This approach yields several advantages over the more traditional
large power plants due to the modular design of DG technolo-
gies [3]. Finding physical locations for DG placement is a well
studied problem and many methods of determining optimal loca-
tions have been explored (see [3, 1] and references therein). A
better understanding of the market behavior and its relation to geo-
graphical location should aid in future DG placement.

ML techniques have been used to analyze power systems for
over a decade (e.g., [4]). For example, ML methods have been
applied to historical data to predict future power failures [6]. ML
techniques have also been applied to the problem of preventative
maintenance [8]. This prior work informs our efforts at developing
ML-based methods for grid analysis, which will be a critical part
of our larger analytic framework for understanding the power grid
and markets.

3. DATA

To promote the public interest, regional authorities organize and
oversee activities in the electric power grid. Among other things,
they manage a bidding process for power production and consump-
tion that results in a Locational Marginal Price (LMP) or clearing
price for each location or bus. There are two distinct markets for
energy bidding. On the Day-Ahead market, an LMP for every hour
of the day for each location is released the previous day, and on the

Differences between [, matrices
L i I

100-

150

200 | 6

250

¥4

0 50 100 150 200 250

Figure 2: The matrix Z(‘? for Real-Time LMP values in 2010.
A low value in matrix location (i, ;) indicates that the LMP
landscape (as defined by /> distance in LMP) during the hour
T is similar to that during 7). A high value indicates that the
LMP landscapes differ.

Real-Time market, the LMP changes every 5 minutes.

The Real-Time LMP values used in this work are publicly avail-
able from the Midwest Independent Transmission System Operator
(MISO). The Midwest was chosen arbitrarily but is representative
of other regional energy markets in the US. However, geographical
locations of the buses are not available from MISO. We were able
to determine the locations of buses in 78 cities by hand. One loca-
tion proved to be an outlier in terms of LMP values during 2010,
and was removed. We used data from one bus from each city, yield-
ing a total of 77 buses. For each we have a latitude, longitude, and
105,120 LMP values — one for every five minute period in 2010.

Offers (referred to as bids in the literature) made by power com-
panies reflect the perceived best interest of the controlling com-
pany. Power companies typically use proprietary models (based
on e.g., weather and history) to facilitate bidding. Our hypothe-
sis, however, is that LMP not only reflects the business objectives
of power plants, but that it also encodes information about the grid
(e.g., congested lines) and other factors. Our challenge is to develop
analytic methods that enable these characteristics to be decoded.

Throughout this work we discuss the LMP landscape — a term
we use to describe the dynamic relationships between LMPs of dif-
ferent buses. Let G = {V, E'} be a weighted complete graph where
the vertices are the buses and an edge exists between all pairs. For
each edge (u, v), we define the weight of that edge as d(u, v) where
d is a function describing the difference (or similarity) between the
LMP patterns of v and v. We explore two specific choices of d.
This graph (with its weights), along with the physical locations of
the buses, defines the LMP landscape. Our analytic focus is on the
dependence of LMP on time and location for the Real-Time market.

4. ANALYTIC METHODS

To quantify the difference between LMP patterns of two buses
u and v we use two different functions. The first is the [ distance
in LMP and the second is the correlation between u and v’s LMP
patterns. Formally:

diy (u,v) = > (unwe(t) — vive(t)?

teT
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Figure 3: Z©™ for Real-Time LMP values in 2010. As with
ZU | alow value indicates similarity (this time as defined by
correlation between LMP patterns) in LMP landscapes, and a
high value indicates that the LMP landscapes differ.
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where upyvp(t) denotes the LMP for the bus w at time ¢, T is the
set of times being considered, H,ST) denotes the average LMP (over
T of u, and O'q(lT) denotes the standard deviation of «’s LMPs (and
similar notation for v). We use correlation because it captures the
dependence between the buses’ LMP behaviors. The Iz norm is
a standard measure of the difference between vectors. We use it
as a measure of error when using one bus’s LMP pattern as the
prediction of another’s'.

Due to the time-variant nature of sustainable energy sources dif-
ferent times of day have different significance. For example, a solar
power plant generates electricity only during daylight hours, and
thus the LMP landscape at night has little relevance. For our analy-
sis, we vary the set T', and all times in 7" have equal weight. How-
ever, the methods used easily extend to varying weights over times.

Let NV denote the number of buses (in our case, N = 77). For a
difference function dy and set of times 7", we construct an N x N
matrix DYT) where Dl(fj’T) = d;T) (,7)- This matrix holds the
relations between buses (in terms of LMP patterns) during the times
in T". We consider overlapping sets 7 for¢ = 1. .. 288 constructed
as follows: T contains all times in 2010 between 12:00AM and
1:00AM, T5 contains all times between 12:05AM and 1:05AM, T3
between 12:10AM and 1:10AM, and so on. This yields a total of
12 x 24 = 288 matrices. To measure the relative rather than abso-
lute differences between these matrices, as we do later, we normal-
ize each DY"7%) such that its maximum entry is 1.

These matrices show the relations between buses based on time
of day. If, for example, a power plant p can only operate between
12:00AM and 1:00AM every day of the year, the matrix D7)
describes how the other buses relate to each other during those
hours, and thus describes the LMP landscape as it pertains to p.
If all D matrices were (roughly) equal, it would indicate that the

"We use I> instead of mean-squared-error only for plotting pur-
poses.
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Figure 4: Difference between the one-hour and average (all
hours) LMP landscapes, where LMP is defined using dcorr (y-
axis) vs. time period of day (z-axis).

LMP landscape is static across times of day. As we will see in
Section 5, this is not the case.

We now describe how the LMP landscape changes when differ-
ent times are considered. To this end, we construct a matrix Z £
such that:

Zi(,é) — HD(f,TJ _ D(f’Tj)HF

where i, j € (1,288) and || - || denotes the Frobenius norm.

1AllF = [> 2> A2,
T

A large value of Zi(’fj) indicates a substantially different mode of
operation in the network, whereas a zero value indicates that there
is no difference between the LMP landscapes.

To provide intuition about Z (), we note the following. For all
i = j, ijf ) — 0, and we expect entries near the diagonal to be

near zero. For example, we expect DYV to be similar to D 72)
because 12:00AM-1:00AM should yield essentially the same rela-
tions as 12:05AM-1:05AM. We also expect low values in the off-
diagonal corners of the matrix due to the 24-hour periodic nature
of the data (Z{%)ss, for example, relates 12:00AM-1:00AM with
11:55PM-12:55AM). If the LMP landscape (or more precisely, the
Frobenius norm of D(f’T)) increases linearly until noon, and then
similarly decreased back to its midnight value, we would see a ma-
trix similar to that seen in Figure 1 (a).

5. RESULTS

Given space limitations, our objective here in reporting results
is to demonstrate the scope and efficacy of our methods. We be-
gin by examining the basic relationships between buses during the
year 2010 by aggregating LMPs of overlapping one-hour periods
of the day. The matrices Z (/) that we obtained demonstrate that
the relations between buses vary dramatically depending on which
hour of the day is considered. The matrices Z™ and Z® show
similar structure, but also key differences. It is clear that the true
matrices (Figures 2 and 3) exhibit much more complicated struc-
ture than the artificial examples shown in Figure 1. Both show
some expected structure, such as low values near the diagonal in
general, but also unanticipated structure that we believe relates to
the physical constraints of the infrastructure.



At times around 7o and T»s55 (around 7:00AM and 9:45PM) we
see a sharp shift in the LMP landscape, indicated by comparatively
high values near the diagonal. This means that the LMP landscape
changes drastically around 9:45PM compared to its fairly gradual
changes throughout the rest of the day. The evening shift is promi-
nent in both Z©™ and Z(? but the morning shift is far more
apparent in Z ) indicating a difference (beyond just magnitude
and timing) between these two shifts. Our conjecture is that these
are caused by the typical working day schedule determining power
usage, which in turn affects electricity prices. Further investiga-
tion will determine other underlying causes of the shifts and their
precise nature.

In addition, we note the periodic nature shown in both Z .
The period of 24 hours is expected by the nature of the construc-
tion, however there are shorter periods visible in the data. This
indicates that, over the hours of the day considered, the structure
of bus relations shows a cyclical behavior. To investigate this be-
havior further, we consider the matrix DY ’*), constructed with 7T’
being the set of all times in 2010. This matrix holds the relations
between buses when all times of day are weighted equally — in-
tuitively this is the average LMP landscape. For each DT we
compute || DY) — DT || £ Results are shown in Figures 4 and

Consider first Figure 4, when dy = dcorr. We note the same cycli-
cal behavior seen in Z, indicating that the LMP landscape departs
from the average behavior periodically. The sharp changes in the
morning and evening remain present as well. We also see a sudden
yet brief dip just after midnight. In addition, we see relatively low
values during the day, and higher values at night. This indicates
that, during the day, the correlation of LMP patterns between buses
better matches the more global view when all times are considered.

When dy = dj2 (Figure 5) this behavior is not clearly evident,
nor is the abrupt dip after midnight. The periodic nature, however,
persists. While related, dj2 and dor differ from each other, and fur-
ther investigation is needed to determine what differences cause the
observed behavior. We predict an underlying cause is the process
of normalizing the D matrices. This causes a loss of information in
Z12) put 2" is unaffected (all correlation values are in [-1, 1]).

Finally, we see additional structure in the Z matrices. The blocks
of low values (as well as those of high values) are axis-aligned, in-
dicating they occur in specific time periods. We also see periodic
discrete changes shown more prominently in Z () Further analy-
sis will reveal the causes of these phenomena as well as more subtle
effects.

6. CONCLUSIONS AND FUTURE WORK

The objective of our work is to develop decision support tools
for electrical power generation that can help to accelerate adoption
of green energy sources, aid in the deployment of new infrastruc-
ture and improve our general understanding of power grid structure
and behavior. While the energy sector and power grid are the focus
of a large body of research, empirical study in this domain is lim-
ited by the lack of data on the infrastructure and its behavior (due
to privacy and security considerations). Our work is based on the
hypothesis that publicly available LMP pricing data from regional
energy markets can be used to infer and extract information about
the power grid.

In this discussion paper, we introduce the general notion of the
LMP landscape. We describe an initial set of analytic methods to
investigate the LMP landscape and apply them to a year-long Real-
Time LMP record from a regional US market. We show that the
LMP landscape varies dramatically depending on the hour of day,
and that there are subtle correlations of behaviors between differ-
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Figure 5: Difference between the one-hour and average (all
hours) LMP landscapes, where LMP is defined using d;> (y-
axis) vs. time period of day (z-axis).

ent locations. We also discovered a periodic relationship with the
average LMP landscape that further highlights the efficacy of our
approach.

Our ongoing work will connect the observed phenomena to the
specifics of the physical grid as well as the LMP market’s behavior.
To that end, we are refining and expanding our analytic methods
and broadening the data sets that we will consider in our evalua-
tions (e.g., weather characteristics, population densities). Finally,
as physical and behavioral characteristics of the grid come into
focus, we will expand our analytic framework to include specific
characteristics of biomass production, transportation, use and im-
pacts (including geographic implications) so that we can close the
loop in our decision support framework.
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