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Abstract. Common wisdom says that the greater the level of teamwork, the

higher the performance of the team. In teams of cooperative autonomous agents,

working together rather than independently can increase the team reward. How-

ever, recent results show that in uncertain environments, increasing the level of

teamwork can actually decrease overall performance. Coined the team uncer-

tainty penalty, this phenomenon has been shown empirically in simulation, but

the underlying mathematics are not yet understood. By understanding the math-

ematics, we could develop algorithms that reduce or eliminate this penalty of

increased teamwork.

In this paper we investigate the team uncertainty penalty on two fronts. First, we

provide results of robots exhibiting the same behavior seen in simulations. Sec-

ond, we present a mathematical foundation by which to analyze the phenomenon.

Using this model, we present findings indicating that the team uncertainty penalty

is inherent to the level of teamwork allowed, rather than to specific algorithms.

1 Introduction

Recently there has been a rise in autonomous teams of agents working cooperatively.

Teams of artificial agents, whether software or robotic are being deployed today in a va-

riety of scenarios, including mobile sensor networks (Cheng et al., 2005; Marden et al.,

2007; Jain et al., 2009), and teams of underwater autonomous scouts (Zhang et al.,

2005). Many problems are universal across multiagent systems. Even in fully observ-

able environments, centralized solutions scale poorly with the number of agents. Often

centralization is not an option, and agents must behave partially independently while

still working with each other to facilitate cooperation. The underlying understanding of

these issues is that the higher the level of teamwork1 the better the outcome.

Recently, however, the question of if agents should work together has arisen. As

such, we do not concern ourselves with issues of communication in this paper, but in-

stead focus on when and if the level of teamwork amongst agents should be increased.

We recently introduced the notion of the team uncertainty penalty (Taylor et al., 2010).

Put informally, this result shows that agents should sometimes act alone, rather than at-

tempt to coordinate, even if communication is free. Previous work points to the density

of a graph as the leading culprit, but the underlying cause remains a mystery.

1 This paper focuses on cooperative multi-agent problems where all agents may be considered

part of a single team as they share a common reward function. However, we use the term

“level of teamwork” to refer the amount of partial centralization among agents, reflected in

how much information they share, how they coordinate actions, and how many agents may

simultaneously perform a joint action. More precisely, higher level of teamwork will refer to

higher values of k in the k-optimal and k-dependent algorithms that follow.



Empirical evidence has shown manifestations of the team uncertainty penalty in

simulation (Taylor et al., 2010). While analysis of these results suggest when the phe-

nomenon will be observed, there has not yet been a way to determine a priori when

the team reward will or will not suffer from increasing agent cooperation. Outside of

simulation, the extent of the team uncertainty has not yet been studied and it is un-

known how debilitating it can be in robotic applications. Moreover, as of yet there is no

mathematical framework under which the specifics of the phenomenon can be analyzed.

This paper provides experimental evidence of robot teams exhibiting similar results

as those found in simulation. We also provide a mathematical analysis used to help

pinpoint the contributing factors of this counter-intuitive phenomenon. Additionally, in

Section 5.3, we provide evidence showing that the team uncertainty penalty is a part of

the DCEE framework rather than an artifact of specific algorithms. We introduce the

notion of L-Movement and analyze that ramifications of restricting the allowed total

movement of an agent team. We also introduce the configuration hypercube for specific

problem formulations and propose that analysis on the probabilistic structure of this

hypercube will lend key insights into the behavior of previously explored algorithms.

In particular, we suggest that analysis of the hypercube will provide a heuristic by which

one can predict the effects of increasing the level of teamwork for a given problem.

2 Background

The Distributed Constraint Satisfaction Problem (DCOP) (Mailler & Lesser, 2004;

Modi et al., 2005; Petcu & Faltings, 2005) framework is becoming common for mod-

eling cooperative multiagent scenarios. Because of its ability to model the need for

cooperation via the notion of joint rewards, the formulation is being used in several

problems, such modeling sensor networks and for multiagent plan coordination (Cox

et al., 2005). Solving a DCOP (determining a globally optimal configuration) is NP-

Hard (Modi et al., 2005), and thus there is substantial work towards finding fast, locally

optimal algorithms (Maheswaran et al., 2004; Pearce et al., 2008; Stranders et al., 2009).

In real world applications, the rewards are not known a priori, and discovering them

requires exploration. Moreover, agents are concerned with a total, online reward achiev-

able in a limited time frame. We present one example of such an application in Section

4. When working in such environments, agents must strike a balance between exploit-

ing their current knowledge and exploring their environment. While exploration vs. ex-

ploitation is a common problem for single agents (c.f., reinforcement learning (Sutton

& Barto, 1998) and multi-armed bandits (Robbins, 1952)), having a multiagent system

where rewards are determined by the coordination of agents adds a level of complex-

ity. The DCOP framework, however, assumes that all aspects of the environment are

known. Allowing uncertainty to be modeled, the notion of a Distributed Coordination

of Exploration and Exploitation (DCEE) problem was recently introduced (Jain et al.,

2009). This extension of DCOP to real world environments accounts for the uncertainty

of rewards, as well incorporating the notion of a limited time horizon. For reference, we

describe DCEE here.

A DCEE domain is much like a DCOP, with several key differences. Specifically,

the rewards in the constraint matrices are not known until they are explored. That is to

say that the reward achieved by agents Ai and Aj when they assign their variables to



λm and λn respectively is not known until a point that Ai assigns value λm and Aj

simultaneously assigns value λn. What is known a priori, however, is something about

the distribution over rewards for each constraint. In this paper we assume the underlying

distribution of rewards is known.

A DCEE consists of a set Q of n variables, {x1, x2, . . . , xn}, assigned to a set of

agents, where each agent controls one (or more) variable’s assignment. For this paper

we concern ourselves with the case when every agent has only one variable. Agents

have at most T rounds to modify their variables xi, which can take on any value from

the finite domain Di. The goal of such a problem is for agents to choose values for

the variables such that the cumulative sum over a set of binary constraints and associ-

ated payoff or reward functions, fij : Di × Dj → ℜ, is maximized over time hori-

zon T ∈ N. More specifically, the agents attempt to pick a set of assignments (one

per time step: A0, . . . ,AT ) such that the total reward (the return) is maximized: R =∑T

t=0

∑
xi,xj∈V fij(di, dj), where di ∈ Di, dj ∈ Dj and xi ← di, xj ← dj ∈ Ak.

The following is a list of select properties that DCEEs have, but DCOPS do not: (1)

agents initially know the constraint graph but only discover rewards through exploration

(i.e., a pair of agents set their values to explicitly discover a reward), (2) problems

last a set amount of time, (3) there are more combinations of domain values than can

be explored within this time (disallowing exhaustive exploration), and (4) we seek to

maximize the online global reward for the team over this time horizon T .

A DCEE can be thought of as being defined in part by a graph G = {V,E}. In this

framework, every variable corresponds to a vertex in V , and every constraint is an edge

in E. Every edge is thus a two dimensional matrix where every element has been drawn

i.i.d. from a known distribution. Throughout this paper we refer to an agent changing

its variable’s value as that agent moving.

2.1 k-Optimal

Centralized algorithms for DCOPs scale poorly, as finding a globally optimal reward

is NP-Hard (Modi et al., 2005). Because of this, approximate DCOP algorithms are

heavily worked investigated (Zhang et al., 2003; Pearce & Tambe, 2007). The notion

of k-optimal configurations expresses the level of a locally optimal solution. The lower

the value of k, the more local the k-optimal solution.

Algorithms previously presented (Taylor et al., 2010) come in different variants

based on the value of k. This value indicates the maximum size of a coalition of agents

that can move at each step. In a DCOP, a k-optimal configuration is defined as one where

no coalition of up to k agents would benefit by changing their variable. The notion of

k-optimal does not extend directly to DCEE, as we discuss in Section 5.1.

2.2 SE-Optimistic

The DCEE algorithm SE-Optimistic-1, where k = 1, will behave as follows. A group

of agents is considered to be in a neighborhood if the subgraph created by those agents

form a connected graph. In each round, every agent calculate their potential gain (how

much they could improve their reward) obtained by moving under the assumption that

all other agents in their neighborhood will not move. Each agent also queries each of

its neighbors for their potential gain. If an agent has a higher potential gain than any

of its neighbors in a given round, it will move so as to obtain its maximum gain. In



SE-Optimistic-2, where k = 2, a pair of agents (in the same neighborhood) will move

if their total potential gain is higher than any other pair of agents in their neighborhood.

Intuitively, these algorithms perform a greedy search. In each round, the agents who

would most benefit by moving alone do so, while others in the same neighborhood do

not move. k = 2 algorithms allow more agents to attempt to improve their individual

rewards in each around, while in k = 1 algorithms only one agent per neighborhood

may move per round.

2.3 MGM-Omniscient

Omniscient algorithms (Taylor et al., 2010) are artificially provided the values of all

rewards of joint actions and thus do not need to explore. This information, causing

the algorithms to be “omniscient” in regards to the rewards, modifies a DCEE into a

DCOP. The omniscient DCEE algorithms referred to in this paper, namely omni-1 and

omni-2, are previously introduced algorithms run on this resulting DCOP. In omni-1, in

each round every agent calculates how much it could improve its own reward by being

the one in its neighborhood to move. After agents communicate these values amongst

others in their neighborhood, the agent who can increase their reward the most moves,

and others in the same neighborhood do not. Omni-2 is similar, but allows for agents

to form coalitions of two agents in the same neighborhood, and both may move in a

single round. These algorithms, called Maximum Gain Message (MGM), are described

in detail elsewhere (Pearce & Tambe, 2007).

3 Team Uncertainty Penalty
Intuitively, it seems that the more teamwork amongst truthful, cooperative agents the

better the overall performance of the team. Increasing the level of teamwork among

agents will add to communication overheads and computational costs, but in this work,

we ignore both communication and computational costs. Instead, the team uncertainty

penalty has to do with decreased total reward (in some circumstances) when teamwork

is increased (Taylor et al., 2010).

The prevalence of the team uncertainty penalty has been shown empirically. It has

been observed in varying graph topology, and across several algorithms. In Section 5.3

we present experimental results of a more mathematical nature that suggest the team

uncertainty penalty in even more general, being an artifact of the level of teamwork

rather than the specifics of the algorithms.

Before discussing the penalty in more depth, we first outline the domain used and

then discuss results in the domain exhibiting this counter-intuitive behavior.

3.1 Simulator Domain

The DCEE mobile wireless network problem was first introduced elsewhere (Jain et al.,

2009). To explore this problem, we have built and released a simulator2 that models a

set of mobile robots with wi-fi antennas that must optimize the sum of the inter-agent

signal strengths. Value settings correspond to agent (robot) locations, constraints are

determined by the network topology, and rewards are based on link quality between

robots. As in prior work, we assume that the topology is fixed, that small changes to

2 Available at http://teamcore.usc.edu/dcop.



agent locations causes signal strengths for that agent to become uncorrelated with their

previous values (i.e., small scale fading dominates (Molisch, 2005)), and that signal

strengths between agents are symmetric.

3.2 Simulator Results

Previous results (Jain et al., 2009; Taylor et al., 2010) demonstrated that multiple DCEE

algorithms were effective at improving the online reward in the simulated domain over

multiple numbers of agents, experiment lengths, and network topologies. To quantify

performance, we consider the total gain of different algorithms, where the gain on round

n is defined as the difference between the team’s reward on round n and the team’s

reward on round 0.

Figure 1 shows the total gains of algorithms on graphs of 10 agents run for 50 rounds

each (averaged over 10 independent trials). First, consider the Omniscient algorithms

(Omni, Omni-2, and Omni-3). In the left half of the graph, we see that as the amount

of teamwork (i.e., k) in the Omniscient algorithm increases, the total reward during

experiments on chain graphs increases. The right half of the graph shows the same trend

for complete graphs: as k increases, the Omniscient algorithm receives more reward.

Fig. 1. In most cases, increasing the amount of

teamwork improves the team reward of agents.

However, as teamwork increases in SE-Optimistic

in a ring graph, team performance decreases. The

y-axis shows the “total gain,” which is a measure

of the total on-line improvement over the length of

the experiment, relative to no optimization.

Results of the Optimistic algo-

rithms in Figure 1 tell a different story.

While increasing k again improves the

gain for complete graphs, higher val-

ues of k decrease the reward gained

in chain graphs (ring graphs with one

fewer edge). This is precisely what we

mean by the team uncertainty penalty:

increasing levels of cooperation may

decrease the team reward (relative to

lower levels of teamwork). This phe-

nomena is further analyzed and dis-

cussed elsewhere (Taylor et al., 2010),

but strictly on an empirical basis.

4 Robot Experiments

This section provides novel experimen-

tal results on physical robots, corrobo-

rating the results from simulation dis-

cussed in the previous section. Previous results (Taylor et al., 2010) come from simu-

lations of DCEE. Here we provide evidence that the DCEE formulation holds true to

real world scenarios, specifically in the case of mobile robots connected via a wireless

network. Moreover, we demonstrate the team uncertainty penalty manifesting on actual

hardware.

4.1 Problem Setup

Robots in this section run DCEE algorithms in order to maximize the signal strength

between wireless network receivers, analogous to the simulation described in Section 3.



An agent can measure the wireless signal strength between itself and each neighbor,

corresponding to measuring the reward for the pair of agent assignments. Agents select

from a set of possible physical locations (i.e., a variable assignment). Because the time

for movement in physical robots dominates communication and calculation time (Jain

et al., 2009), we measure experiment length by the number of rounds, defined by the

period in which every agent may decide to move to a new position and then reach that

position. All agents may choose to either stay in their current position or explore.

The Create, made by iRobot, is used as the platform for our experiments (see Fig-

ure 2). Additionally, an ebox-3854 is used as an on-board computer and the EMP-8602

mini PCI card is used for 802.11 b communication between the robots. More details

can be found at http://enl.usc.edu/projects/peg/platform.html.

4.2 Results

Fig. 2. Three Creates with additional hardware.

This section discusses the results

of executing the SE-Optimistic-

1 and SE-Optimistic-2 algorithms

on physical robots. To corrobo-

rate the results in simulation, the

two algorithms are tested on both

chain and complete graphs of five

agents each. Figure 3 shows the

average gain per round of the four

different setups. The plots aver-

age ten trials and error bars show

the standard error. In all cases, the

algorithms improve the reward of

the team, although SE-Optimistic-1 on the complete graph improves much more slowly.

One possible reason for this discrepancy is that the gain achieved by the agents is de-

pendent on the starting configuration — the worse the starting configuration, the more

latitude exists for achievement. Unfortunately, the physical agents cannot be returned

to exactly the same start state, and thus different trials have different initial signal

strengths. The average team initial reward for the complete graphs when run using SE-

Optimistic-1 was 574 ± 55, whereas the average for SE-Optimistic-2 was 506 ± 31,

thus SE-Optimistic-1 has a relatively harder time improving the team’s reward.

Figure 4(a) displays the total gain (i.e., the area under the curves in Figure 3). We

again see that SE-Optimistic-1 on a complete graph performs worse than all other al-

gorithms. Most important is that the trends from section 3 are seen again. In a chain

graph, k = 1 outperforms k = 2, and in a complete graph, k = 2 outperforms k = 1.

As such, these experiments on five robots confirm trends predicted in simulations of

10–50 virtual agents.

5 Analysis of the Team Uncertainty Penalty

This section provides a mathematical foundation for analyzing the team uncertainty

penalty. We extend the notion of a k-optimal configuration in a DCOP to the DCEE for-

mulation. We also introduce the notion of L-movement which expresses the flexibility
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in exploration of a given DCEE algorithm. Finally, we present a mathematical model of

DCEE problems based on the interplay of random variables.

Previously introduced algorithms such as SE-Optimistic-1 and SE-Optimistic-2 have

behavior defined by the value k, controlling the number of agents that cooperate in each

round. We refer to this class of algorithms as k-dependent. Previous work points to

graph density as a strong contributing factor (Taylor et al., 2010), and we extend this

analysis by introducing the notion of L-movement, which ties directly to graph density.

In addition, we provide simulation results showing the effects of changing the value of

k in k-dependent algorithms.

We hope that the DCEE formulation will eventually be understood fully on a the-

oretic level. This section provides a foundation for such an understanding, as well as

some initial results from the proposed mathematical model. We show that the team

uncertainty penalty may not be the fault of the individual algorithms, and provide evi-

dence that the phenomenon is an inexorably tied to DCEE formulation and algorithms’

dependence on k.

5.1 Extending k-Optimality and Introducing L-Movement

In a DCOP, a configuration is defined as k-optimal if no connected group of at most k

agents would benefit by jointly moving (Maheswaran et al., 2004; Pearce et al., 2008).

In a DCEE, however, the rewards are not known, and thus an agent (or group of agents)

cannot know whether or not they would increase their reward by changing their vari-

able(s). Therefore the notion of k-optimality does not extend directly from DCOP to

DCEE. However, if the reward distribution(s) are known in a DCEE, a natural exten-

sion of the k-optimal definition is that a DCEE configuration is k-optimal if and only

if no connected group of up to k agents has a positive expected gain by choosing an

entirely new configuration. However, this does not allow for the possibility of agents

reverting to a previously seen (partial-)configuration.
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In a starting configuration of a DCEE, where only one configuration (the current

one) has been explored, this definition is reasonable, and connects well with the notion

of k-optimality of a DCOP configuration. After even one round, however, groups of

agents have the option to jointly move back to a configuration where some or all of the

constraint reward values have been observed. As such, the k-optimality of a configura-

tion would depend on the set of configurations already observed. We therefore provide

a definition of k-optimal in DCEE as follows.

Definition 1. A DCEE configuration, combined with the history of explored configu-

rations, is k-optimal if and only if no group of up to k agents has a positive expected

gain by selecting another configuration with zero or more constraint values already

explored.

This says a configuration is only k-optimal if no coalition of up to k agents could move

so as to increase their total reward by each agent either (i) selecting previously explored

values and obtaining the known rewards, or (ii) selecting unexplored actions leading to

a positive expected gain in total reward. Because of the dependence on explored and

unexplored configurations, the set of potentially k-optimal configurations of a DCEE is

extremely large. Consider the following example.

Example 1. A DCEE with two agents A1 and A2 and one constraint. When each vari-

able takes on the first value, the first reward is known – suppose it is 120. A1 then

moves, selecting a new value, and the constraint yields a reward of 110. At this point

two rewards are known. Suppose either A1 or A2 can select an action that will yield a

reward of 110 with probability .5, and a reward of 100 with probability 5. Selecting a

new action would yield an expected gain of 110 − 105 = −5. However, if A1 reverts

to its previous action it can increase the total reward by 120 − 110 = 10. Thus this

configuration, combined with the history of explored configurations, is not 1-optimal.

We now focus on a different aspect of k-dependent algorithms. First we introduce

L-Movement, a value we will use heavily in our analysis.



Definition 2. The L-movement, denoted as L, of a DCEE algorithm on a graph G is

the maximum number of agents that can move in any one round.

There is no restriction inherent to the DCEE formulation on the number of agents

that can move at each step. For example a valid, albeit naı̈ve, algorithm would move

every agent at every step. In SE-Optimistic-1 and SE-Optimistic-2, as well as other

k-dependent algorithms, only a limited subset of agents can move at each step.

This restriction of movement is caused by the fact that an agent cannot move if

more than k−1 of its neighbors also move. For a given graph, we denote the maximum

number of agents that can move in each round of a k-dependent algorithm as L. We that

note L is dependent on the graph topology, for example in k = 1 algorithms L is the

size of the largest maximal independent set of the graph, a value known to be NP-hard

to calculate for a general graph. L-movement is central to our analysis presented in 5.3

where we show the change in L caused by changing k determines the change in team

performance. Consider a ring graph and a complete graph, both with 5 vertices (see

Figure 4(b)). In the ring graph, the size of the maximal independent set is 2, whereas in

the complete graph it is only 1. In general, the size of the maximal independent set of a

ring graph is ⌊ |V |
2 ⌋, and is 1 for a complete graph.

5.2 The Configuration Hypercube

For a DCEE problem, we use the following notation:

G = {V, E} The graph of the DCEE.

A = {A1, . . . A|V |} The set agents.

R = {R1, . . . , R|E|} The set of constraints.

ri The distribution from which the rewards of Ri are drawn.

T The number of rounds for which the algorithms are run.

xi The variable of the agent Ai.

Di The domain of xi.

C The configuration hypercube (defined below).

λi The value of the i-th coordinate of a location in C.

We consider the set of all DCEE algorithms where:

– The starting configuration is initialized randomly.

– The algorithm is run for s steps, ending with some configuration.

– That ending configuration is then chosen for every step for the rest of time.

This is to say that s steps are allotted to exploration, after which the algorithm only

exploits (keeps the same configuration) for the remaining T − s rounds. We analyze the

reward achieved after the s steps of exploration.

To analyze such algorithms we define a |V |-dimensional hypercube C as the Con-

figuration Hypercube. Each dimension of C corresponds to an agent, with the loca-

tion within that dimension defined by the assignment of the agent’s variable. We let

C[λ1, λ2, . . . , λ|V |] be the total reward when agent Ai takes value λi.

We note that, for a given agent, no value for its variable is believed a priori to

be more beneficial than any other. Therefore, without loss of generality we say that

each agent Ai has an ordered list of values α = α1, . . . , α|Di|, and that at each round

of a DCEE algorithm, an agent has only two choices: (1) select an value previously



chosen, or (2), select the first value (the value with the lowest index) that has not yet

been assigned. Further, for any DCEE algorithm, we assume (again without loss of

generality) that all agents begin with their first variable setting, α1.

At each round of an algorithm, zero or more agents move. Note that at any location

λ = (λ1 . . . λ|V |) in C, the achievable locations after one step are all locations adjacent

to λ (l∞ distance to λ is 1). That is to say that λ is reachable if and only if maxi(λi) ≤ s.

Further, for a general DCEE algorithm, the locations reachable from the starting loca-

tion in s steps form an (s + 1)-sized |V |-dimensional hypercube Cs where all locations

have l∞ distance to the starting location less than or equal to s. The expected maximum

value of Cs is an upper bound for the total reward achievable by any DCEE algorithm

(under conditions described above) running for s rounds.

However, computing the expected maximum element of Cs is non-trivial. Every

entry in Cs is the sum of |E| values (one from each constraint), and thus the entries are

highly dependent. Furthermore, while each constraint contributes s2 values to Cs and

the expected maximum of each of these can easily be computed, Cs contains only a

subset of the possible sums of constraint values. The expected maximum is not simply

the sum of the expected maximums of the constraint matrices. Moreover, this subset is

a function of the graph structure and finding the expected maximum can be difficult.

We note that the expected maximum of Cs is the expected maximum reward ob-

tainable by an algorithm that does need to explore. By this we mean an algorithm with

perfect knowledge of the values of all locations in Cs, but with the limitation that con-

figurations outside of Cs are unreachable. As such, it is not a tight bound for DCEE

algorithms. We illustrate this fact with the following example.

Example 2. Consider a DCEE with two agents A1 and A2, and one constraint between

them. Let Md(i) denote the expected maximum of i samples drawn independently from

distribution d. The specific form of Md(i) is unimportant for our results, but the func-

tion can be computed for the distributions we use. The 2-dimensional cube Cs would

have (s + 1)2 values, with the expected maximum being Md((s + 1)2). An algorithm

that knows all values in Cs could assign values for both agents’ variables such that this

reward is obtained. An algorithm without access to the individual values, however, has

four choices at each step – change A1’s variable, change A2’s variable, change both

agents’ variables, or leave the configuration unchanged. When either or both of the

agents change their variable the (only) constraint is re-sampled. Thus the best an algo-

rithm could hope to achieve is the expected maximum of s+1 samples, i.e., Md(s+1).

Achieving the maximum value of Cs requires the algorithms to know more about

the reward matrices than is allowed in the DCEE framework. We also note an additional

relaxation. In k-dependent algorithms, not all k-sized subsets of agents can move in one

round. For example, running a k = 1 algorithm on a five vertex ring graph has a value

of L = 2. Our experiments take the maximum value of Cs reachable by changing any

two (or fewer) agents in each round. A k-dependent algorithm, however, could not have

two adjacent agents change their variable’s value in a single round when k = 1.

Even with these relaxations, insights can be gained by observing what happens

when we consider the portion of Cs reachable when we restrict the number of agents

that can move at each step. Consider the example with two agents described above as

we discuss the locations in the configuration hypercube that are reachable. If zero, one,



or both agents can move at every step (L = 2), then all (s + 1)2 locations in Cs are

reachable. However, if at most one agent can move in each round (L = 1), at every step

only one (or neither) agent can move, then only
(s+1)2

2 + s locations can be reached.

See Figure 5.

For a DCEE, recall that Cs is defined as all locations in C with l∞ distance to the

starting point less than or equal to s. If only one agent can move per step, the reachable

locations of Cs instead are all locations λ = (λ1 . . . λ|V |) in C with l1 distance less than

or equal to s (i.e.,
∑

i(λi) ≤ s). When two or more agents can move at each step, the

set of reachable locations in C becomes less intuitive. We now define such sets.

Fig. 5. C7 for a two

vertex, single edge

graph, where the initial

configuration corre-

sponds to the lower left

corner and shaded cells

are reachable by an

algorithm with L = 1.

In general a location λ = (λ1, λ2, . . . , λ|V |) in Cs is reach-

able if and only if
|V |∑

i=0

λi ≤ Ls

where L is the maximum number of agents that can move at

a single step, as defined above. To understand this inequality,

imagine having n bins corresponding to the n agents (see Fig-

ure 6). In each round of the algorithm, you can place up L balls

into these bins, with the restriction that you cannot place more

than one ball in any one bin in a single round. Placing a ball

in the i-th bin on the j-th round corresponds to the agent Ai

changing its variable on the j-th round. After s rounds, there

are two restrictions of the ending quantities in the bins: (1) the

most full bin can contain at most s balls, and (2) the total num-

ber of balls must be less than or equal to Ls. Restriction 1 says

the location must be within the confines of Cs, and the above

inequality upholds restriction 2.

5.3 L-Movement Experimentation

1 2 3 4 5

Fig. 6. For a five agent graph

and a L = 2 algorithm, up to

two of the five bins could re-

ceive a ball in each round. A

configuration (such as the one

shown above) would indicate

that agent Ai takes value λj

where there are j balls in the i-

th bin. The configuration shown

above is reachable by a L = 2

algorithm in 4 rounds, but not

in 3 rounds – bin 5 contains 4

balls.

We constructed Cs for s = 1 . . . 30 for a complete graph

and a ring graph (both containing 5 nodes). Every con-

straint has its rewards drawn from a Gaussian distribu-

tion with mean 100 and variance 16. For L = 1 . . . 5,

we calculated the maximum value of the achievable lo-

cations. Values are averaged over 50 trails.

Note that the plots for Ring graphs and Complete

graphs are exceptionally similar (see Figure 7). The dif-

ference between L = i and L = i + 1 decreases as

i increases in both figures – the L = 4 curve overlaps

almost entirely with the L = 5 curve. Specifically, we

note that the L = 1 curve is drastically different from

the L = 2 curve. This indicates that L is a considerable

contributing factor to the team uncertainty penalty. We

ran experiments on other graphs as well, and using dif-

ferent distributions for reward values. All results showed

similar behavior in regards to changing L. See Figure 8.
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Fig. 7. These plots show the best team reward found in each round while exploring five-agent ring

and complete graph DCEEs where all rewards are drawn from a Gaussian distribution with mean

100 and standard deviation 16 for L = 1 . . . 5. Note that the performance difference between

L = 1 and L = 2 is larger than between L = 2 and L = 3. This relative performance difference

decreases as L increases. Values are averaged over 50 runs, and error bars show standard error of

the mean.

Let us consider the specific case of SE-Optimistic-1 and SE-Optimistic-2 running

on DCEEs defined in part by these graphs (see Figure 9). In the complete graph, L = 1
for k = 1 and L = 2 for k = 2. Thus we would imagine that SE-Optimistic-2 would

outperform SE-Optimistic-1 by a fair margin. In the ring graph, on the other hand,

L = 2 for k = 1 and L = 3 for k = 2. This means that in the complete graph,

we are potentially obtaining a large benefit from changing k = 1 to k = 2 because

doing so means we go from L = 1 to L = 2. In the ring graph, however, the same

change in k yields a change from L = 2 to L = 3 which has a much smaller potential

performance gain. Therefore we would expect to see a smaller improvement, if any, of

SE-Optimistic-2 over SE-Optimistic-1. Empirically, this is precisely what is exhibited

both in simulation and on robots.

These results indicate that the L-movement, determined by the value of k, may

contribute to the team uncertainty penalty rather than the operations of the specific al-

gorithms. A general algorithm with L = 2 will have the ability to explore more of Cs
than an algorithm with L = 1. Note that L is strictly determined by the graph topol-

ogy and k, thus any k-dependent algorithm will experience diminishing returns as k

increases. It is worth noting that the L-movement difference between k = 1 algorithms

and k = 2 algorithms will only be higher in larger ring and complete graphs. Recall that

for a general ring graph the maximum independent set is of size ⌊ |V |
2 ⌋, and is always 1

for a complete graph. This means that the L-movement for a k = 1 algorithm is always

L = 1 for a complete graph, but increases with the number of vertices in a ring graph.

5.4 Predictions

We consider how L varies with k. For these graphs we have the following table:

5 Agents Ring Graph Complete Graph
k = 1 : L = 2 L = 1

k = 2 : L = 3 L = 2

k = 3 : L = 3 L = 3

k = 4 : L = 4 L = 4

k = 5 : L = 5 L = 5
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Fig. 8. The first two figures show curves for graphs where all rewards are drawn uniformly from

the range 0 . . . 200. The next two figures show curves generated from four agent graphs, with

rewards drawn from a Gaussian with µ = 100 and σ = 16. The final two figures again have five

agents, but rewards were drawn from a Gaussian with µ = 100 and σ = 32.

This indicates that the difference between a k = 1 algorithm and a k = 2 algorithm is

much greater in a complete graph than in a ring graph. Moreover, for a given graph and

a given k, there is a unique L. Thus this analysis provides a heuristic by which one can

a priori determine if a team will suffer from the team uncertainty penalty by estimating

the potential benefit of a higher k.

Previous results both from simulation (Taylor et al., 2010) and from on robots we

see that k = 1 optimistic algorithms out perform k = 2 algorithms on ring graphs, but

underperform on complete graphs. Our experimental analysis of L-movement shows

that when increasing the L-movement of an algorithm from L = 1 to L = 2, a much

greater gain is expected than when increasing the L-movement from L = 2 to L = 3.

In the case of complete versus ring graphs, changing an algorithm from k = 1 to k = 2
corresponds exactly with changing L from 1 to 2 (on a complete graph), and from 2

to 3 (on a ring graph). Our results also predict that a k = 3 algorithm on a ring graph
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Fig. 9. The difference between k = 1 and k = 2 for a complete graph is far greater than for a

Ring graph. In the ring graph, the increase from k = 1 to k = 2 results in an increase from L = 2

to L = 3. In the complete graph, however, we instead have L = 1 and L = 2.

would perform very similarly to a k = 2 algorithm, because L = 3 for both graphs.

On a complete graph we would predict that a k = 3 algorithm would see a gain in total

reward over a k = 2 algorithm, albeit it a smaller increase than that from k = 1 to

k = 2. This is observed both in simulation and on robots.

6 Conclusions and Future Work

The DCEE framework is a recent extension of DCOPs enabling agents to cope with

uncertainty in the environment and problems in which online reward is critical. While

investigating the effect of teamwork in DCEEs, our earlier work (Taylor et al., 2010)

showed the counter-intuitive team uncertainty penalty in simulation. This paper as

further strengthened the claim that the team uncertainty penalty is an important phe-

nomenon worth studying by confirming its existence on physical agents.

By understanding the team uncertainty penalty and what causes it, we will better

be able to design algorithms to avoid or less its impact. In order to attempt to better

understand this phenomenon, this paper has made a number of contributions. First, we

have introduced the notion of L-movement in the context of a DCEE, an extension

of k-optimality from the DCOP literature. Second, we show how L-movement and k-

optimality are related in a graph-dependant manner, and suggest that the uncertainty

penalty may be due to this relation. Third, we have introduced the notion of a con-

figuration hypercube in a DCEE, which we will leverage in the future to theoretically

analyze different classes of DCEE algorithms.

This paper has presented evidence that the team uncertainty penalty is possibly an

intrinsic phenomenon of the L-movement algorithms, which is determined not by the

specifics of the algorithms, but the level of k. In the future, we will continue analysis

of the configuration hypercube to develop bounds on L-movement algorithms, design



algorithms to maximize the expected reward found on a given configuration hypercube,

and to fully explain the team uncertainty principle.
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