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Identifying shortest paths between nodes in a network is a common graph analysis problem that is important
for many applications involving routing of resources. An adversary that can manipulate the graph structure
could alter traffic patterns to gain some benefit (e.g., make more money by directing traffic to a toll road).
This article presents the Force Path Cut problem, in which an adversary removes edges from a graph to make
a particular path the shortest between its terminal nodes. We prove that the optimization version of this
problem is APX-hard but introduce PATHATTACK, a polynomial-time approximation algorithm that guarantees
a solution within a logarithmic factor of the optimal value. In addition, we introduce the Force Edge Cut and
Force Node Cut problems, in which the adversary targets a particular edge or node, respectively, rather than
an entire path. We derive a nonconvex optimization formulation for these problems and derive a heuristic
algorithm that uses PATHATTACK as a subroutine. We demonstrate all of these algorithms on a diverse set of
real and synthetic networks, illustrating where the proposed algorithms provide the greatest improvement
over baseline methods.
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1 INTRODUCTION

Finding the shortest paths between interconnected entities is an important task in a wide variety
of applications. When routing resources—such as traffic on roads, ships among ports, or packets
among routers—identifying the shortest path between two nodes is key to making efficient use of
the network. Given that traffic prefers to take the shortest route, a malicious adversary with the
ability to alter the graph topology could manipulate the paths to gain an advantage. For example,
a road network could be manipulated to direct traffic between two popular locations across a
toll road the adversary owns. A computer network could be altered to encourage packets to flow
through an adversary’s subnetwork. Undermining connections in a social network may enable
the adversary to become a “gatekeeper” to an important individual. Countering such behavior is
important, and understanding vulnerability to such manipulation is a step toward more robust
graph mining.

In this article, we present the Force Path Cut problem, in which an adversary wants the shortest
path between a source node and a target node in an edge-weighted network to follow a preferred
path. The adversary achieves this goal by cutting edges, each of which has a known cost for re-
moval. We show that the optimization version of this problem is APX-hard via a reduction from
the 3-Terminal Cut problem [18]. To optimize Force Path Cut, we recast it as a Weighed Set Cover
problem, which allows us to use well-established approximation algorithms to minimize the total
edge removal cost. We propose the PATHATTACK algorithm, which combines these algorithms with
a constraint generation method to efficiently identify a subset of paths to target for disruption.
While these algorithms only guarantee an approximately optimal solution in general, PATHATTACK
yields the lowest-cost solution in a large majority of our experiments.

We also introduce the Force Edge Cut and Force Node Cut problems, where a specific edge (or
node) is targeted rather than an entire path. The optimization versions of these problems are also
APX-hard, and we use PATHATTACK as part of a heuristic search algorithm to solve them. The three
problems are defined formally in the following section.

1.1 Problem Statement

We consider a graph G = (V ,E), where the vertex set V contains N entities and E consists of M
edges, which may be directed or undirected. Each edge has a weight w : E → R≥0 denoting the
expense of traversal (e.g., distance or time). In addition, each edge has a removal cost c : E → R≥0.
We are also given a source node s ∈ V , a target node t ∈ V , and a budget b > 0 for edge removal.
Within this context, there are three problems we address:

• Force Edge Cut: Given an edge e∗ ∈ E, find E ′ ⊂ E where
∑

e ∈E′ c (e ) ≤ b and all shortest
paths from s to t in G ′ = (V ,E \ E ′) use e∗.
• Force Node Cut: Given a node v∗ ∈ V , find E ′ ⊂ E where

∑
e ∈E′ c (e ) ≤ b and all shortest

paths from s to t in G ′ = (V ,E \ E ′) use v∗.
• Force Path Cut: Given a path p∗ from s to t in G, find E ′ ⊂ E where

∑
e ∈E′ c (e ) ≤ b and p∗

is the unique shortest path from s to t in G ′ = (V ,E \ E ′).
Each variation of the problem addresses a different adversarial objective: there is a particular

edge (e.g., a toll road), a particular node (e.g., a router in a network), or an entire path (e.g., a
sequence of surveillance points) where increased traffic would benefit the adversary. The attack
vector in all cases is removal of edges, and the adversary has access to the entire graph. We also
consider the corresponding optimization problems for each decision problem defined above. In the
optimization version, the objective is to find E ′ with the smallest cost

∑
e ∈E′ c (e ) that satisfies the

decision problem’s conditions. We refer to each optimization counterpart of the corresponding
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decision problem as Optimal Force Edge Cut, Optimal Force Node Cut, and Optimal Force Path
Cut, respectively.

1.2 Contributions

The main contributions of this article are as follows:

• We define the Force Edge Cut, Force Node Cut, and Force Path Cut problems and prove that
their corresponding optimization problems are APX-hard.
• We introduce the PATHATTACK algorithm, which provides a logarithmic approximation

for Optimal Force Path Cut with high probability (greater than 1 − (1/|E |)) in polynomial
time.
• We provide a non-convex optimization formulation for Optimal Force Edge Cut and Optimal

Force Node Cut, as well as polynomial-time heuristic algorithms.
• We present the results of over 16,000 experiments on a variety of synthetic and real

networks, demonstrating where these algorithms perform best with respect to baseline
methods.

1.3 Article Organization

The remainder of this article is organized as follows. In Section 2, we briefly summarize related
work on inverse optimization and adversarial graph analysis. In Section 3, we provide a sketch
of the proof that all three optimization problems are APX-hard. (Details are presented in
Appendix A.) Section 4 introduces the PATHATTACK algorithm, which guarantees a logarithmic
approximation of the optimal solution to Force Path Cut. In Section 5, we show how PATHATTACK
can be used as a heuristic for the optimization versions of Force Edge Cut and Force Node
Cut. Section 6 documents the results of experiments on diverse real and synthetic networks,
demonstrating where PATHATTACK provides a benefit over baseline methods. In Section 7, we
conclude with a summary and discussion of open problems.

2 RELATED WORK

Early work on attacking networks focused on disconnecting them [2]. This work demonstrated
that targeted removal of high-degree nodes was highly effective against networks with power
law degree distributions (e.g., Barabási–Albert networks), but far less so against random networks.
This is due to the prevalence of hubs in networks with such degree distributions. Other work
has focused on disrupting shortest paths via edge removal, but in a narrower context than ours.
Work on the most vital edge problem (e.g., [44]) attempts to efficiently find the single edge whose
removal most increases the distance between two nodes. (The similarly defined most vital node
seeks the node whose removal does the same [45].) Our present work, in contrast, considers a
devious adversary that wishes a particular path to be shortest, or to target a specific node or edge
for routing, rather than to maximize the distance.

There are several other adversarial contexts in which path finding is highly relevant. Some work
is focused on traversing hostile territory, such as surreptitiously planning the path of an unmanned
aerial vehicle [29]. The complement of this is network interdiction, where the goal is to intercept
an adversary who is attempting to traverse the graph while remaining hidden. Bertsimas et al.
formulate an optimization problem similar to Optimal Force Path Cut, where the goal is overall
disruption of flows rather than targeting a specific shortest path [6]. Network interdiction has been
studied in a game theoretic context for many years [52] and has expanded into work on disrupting
attacks, with the graph representing an attack plan [36]. In that work, as in ours, oracles can be
used to avoid enumerating an exponentially large number of possible strategies [26].

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 35. Publication date: November 2023.
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As with many graph problems, finding a shortest path can be formulated as an optimization
problem: over all paths from s to t , find the one that minimizes the sum of edge weights. Finding
the weights for two nodes to have a particular shortest path is an example of inverse optimiza-
tion [1]. From this perspective, the shortest path is a function mapping edge weights to a path,
and the inverse shortest path problem is to find the inverse function: input a path and output a
set of weights. This typically involves finding a new set of weights given a baseline that should
change as little as possible, with respect to some distance metric (though it is shown in [56] that
solving the problem without baseline weights solves the minimum cut problem). To solve inverse
shortest path while minimizing the L1 norm between the weights, Zhang et al. propose a column
generation algorithm [59], similar to the constraint generation method we describe in Section 4.3.
Such a constraint generation procedure is also used in the context of navigation meshes in [9].
The instance of inverse shortest path that is closest to Force Path Cut uses the weighted Hamming
distance between the weight vectors, where changing the weight of an edge has a fixed cost,
regardless of the size of the change.1 This case was previously shown to be NP-hard [57]. In
this article, we show that Optimal Force Path Cut, which is less flexible, is also not just NP-hard,
but APX-hard.

In addition to inverse shortest path, authors have considered the inverse shortest path length
problem (sometimes called reverse shortest path) [47], where only the length of the shortest path
is specified. This problem has been shown to be NP-hard except when only considering a single
source and destination [16, 58]. There is also the notion of inverse shortest path routing, in which
edge weights are manipulated so that edges from one specified subset are used for shortest paths,
while edges from a second, disjoint subset are never used [10]. Other graph-based optimization
problems, such as maximum flow and minimum cut, have also been topics in the inverse optimiza-
tion literature (see, e.g., [20, 27, 38]). Also on the topic of altering a graph to change the routing
pattern is work on altering node delays within a given budget [21, 39], including cases where the
improvement must be noticeable to users [40]. Others have considered the problem of altering
shortest paths by adding edges, rather than removing them or changing weights [41].

There has recently been a great deal of work on attacking machine learning methods where
graphs are part of the input. Finding shortest paths is another common graph problem that
attackers could exploit. Attacks against vertex classification [14, 19, 54, 55, 60] and node em-
beddings [8, 11] consider attackers that can manipulate edges, node attributes, or both in order
to affect the outcome of the learning method. In addition, attacks against community detection
have been proposed where a node can create new edges to alter its group assignment from a
community detection algorithm [13, 28, 30], or to reduce the efficacy of community detection
overall [12, 23, 37, 43, 51]. Our work complements these efforts, expanding the space of adversarial
graph analysis into another important graph mining task.

3 COMPUTATIONAL COMPLEXITY

We first consider the complexity of Force Path Cut. Like inverse shortest path under Hamming
distance [57], this problem is NP-hard, as shown in our prior work [42]. A novel result of our
present work is that Optimal Force Path Cut is not merely NP-hard; there is no possible polynomial-
time approximation scheme—i.e., no polynomial-time algorithm can find a solution within a factor
of (1 + ϵ ) of the optimal (minimal) budget unless P = NP. This applies to the optimization version
of the problem. Using a linear reduction from another APX-hard problem, we prove the following
theorem.

1Edge removal can be simulated by significantly increasing weights. Inverse shortest path using weighted Hamming
distance also allows for reducing edge weights, which is not allowed in Force Path Cut.
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Fig. 1. Reduction from 3-Terminal Cut to Force Path Cut. The initial graph (left) includes three terminal

nodes s1, s2, and s3, which are connected to the rest of the graph by edge sets E1, E2, and E3, respectively.

The dashed lines indicate the possibility of edges between terminals. The input to Force Path Cut, Ĝ (center),

includes the original graph plus many long parallel paths between terminals. A single path from s1 to s3
composing p∗ is indicated in red. The result of solving Force Path Cut and removing the returned edges

(right) is that any existing paths between the terminals have been removed, thus disconnecting them in the

original graph and solving 3-Terminal Cut.

Theorem 3.1. Optimal Force Path Cut is APX-hard, including the case where all weights and all

costs are equal.

3.1 Proof Sketch

The following is a sketch of the proof of Theorem 3.1, with a detailed proof provided in Appendix A.
First, consider the case for undirected graphs, where all edges weights are equal to their removal
costs. We prove this is APX-hard via reduction from 3-Terminal Cut [18]. In 3-Terminal Cut, we are
given a graph G = (V ,E); three terminal nodes s1, s2, s3 ∈ V ; and a budget b ≥ 0. For the purpose
of this proof, we only consider the case where all edge weights are equal. The goal is to determine
whether there exists E ′ ⊂ E, with |E ′ | ≤ b, where s1, s2, and s3 are disconnected inG ′ = (V ,E \E ′);
i.e., after the edges E ′ are removed, no path exists between any of the terminal nodes.

We reduce 3-Terminal Cut to Force Path Cut via the following process, illustrated in Figure 1.
Create M + 1 new disjoint paths, each N hops long, from s1 to s2. This introduces (M + 1) (N − 1)
new nodes and (M + 1)N new edges. Do the same for s2 and s3 (another (M + 1) (N − 1) nodes and
(M + 1)N edges). Create a new (2N − 1)-hop path from s1 to s3 (2N − 2 new nodes, 2N − 2 new
edges). Make the new path from s1 to s3 the target path p∗, with s = s1 and t = s3. Call the resulting
graph Ĝ. Solve Force Path Cut on Ĝ, obtaining a set of edges E ′ to be removed.

If E ′ is a solution to Force Path Cut, it is also a solution to 3-Terminal Cut. If any of the terminal
nodes could be reached from another using edges in the original graph,p∗would not be the shortest
path. If a path from s2 to s3 from the original graph remained, for example, this path would be at
most N − 1 hops long. There would exist a path from s1 to s3 using one of the new (N + 1)-hop
paths from s1 to s2, followed by the remaining path from s2 to s3. This path would be less than
2N + 1 hops, so p∗ would not be the shortest path.

In the optimization version of the problem, the goal is to find the E ′ that solves 3-Terminal Cut
with the smallest budget. Let E ′OPT be this edge set. Since this set disconnects the terminals, it

also solves Force Path Cut on Ĝ. In the full proof, we show that there is no way to solve Force
Path Cut on Ĝ with fewer edges. Thus, the solution for Optimal Force Path Cut is the same as the
optimal solution to 3-Terminal Cut. In addition, if we consider any solution Ê ′ to Force Path Cut
on Ĝ, we show that there is a solution to 3-Terminal Cut that is no larger than Ê ′. As we discuss in
the appendix, this means that the reduction is linear, and thus preserves approximation. Since 3-
Terminal Cut is APX-hard, a linear reduction implies that Optimal Force Path Cut is also APX-hard.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 35. Publication date: November 2023.



35:6 B. A. Miller et al.

To prove that Optimal Force Path Cut is APX-hard for directed graphs as well, we reduce Force
Path Cut for undirected graphs to the same problem for directed graphs. Given an undirected
graph G = (V ,E) and the path p∗ from source node s to destination node t , create a new graph
Ĝ = (V , Ê) on the same vertex set, with two directed edges for each undirected edge from G; i.e.,
Ê contains the directed edges (u,v ) and (v,u) if and only if E contains the undirected edge {u,v}.
We again consider the case where all weights and all costs are equal. Solve Optimal Force Path
Cut on Ĝ, obtaining the solution Ê ′. For each directed edge in (u,v ) ∈ Ê ′, remove the undirected
edge {u,v} from G. In the resulting graph, p∗ will be the shortest path from s to t . As we show in
Appendix A.2, if the optimal solution includes (u,v ), it cannot also include (v,u); i.e., if (u,v ) ∈ Ê ′,
then (v,u) � Ê ′. This implies that the optimal solution size for Force Path Cut in directed graphs is
equal to the optimal solution size for Force Path Cut in undirected graphs. By the same argument
that we used for undirected graphs, Optimal Force Path Cut is therefore APX-hard for directed
graphs.

3.2 Extension to Force Edge Cut and Force Node Cut

The same reduction used to prove that Optimal Force Path Cut is APX-hard can show the same
for Optimal Force Edge Cut. The difference is that, rather than letting p∗ be the new path from s1

to s3, we let e∗ be one of the edges along this new path. This will still force the new path from s1

to s3 to be the shortest, so the optimal solution will be exactly the same. Like Optimal Force Path
Cut, the directed and undirected cases have the same solution, resulting in the following theorem.

Theorem 3.2. Optimal Force Edge Cut is APX-hard, including the case where all weights and all

costs are equal.

By selecting a node along the new path from s1 to s3 to act asv∗, we can make the same argument
for Optimal Force Node Cut.

Theorem 3.3. Optimal Force Node Cut is APX-hard, including the case when all weights and all

costs are equal.

4 PATHATTACK

While Optimal Force Path Cut is APX-hard, its solution can be approximated within a logarithmic
factor in polynomial time. This section describes an algorithm to achieve such an approximation.

4.1 Cutting Paths via Set Cover

We first note that Optimal Force Path Cut can be recast as an instance of Weighted Set Cover. In
Weighted Set Cover, there is a discrete universe U of elements and a set S of subsets of U , where
each subset S ∈ S has an associated cost c (S ) ≥ 0. The objective is to find the subset of S with the
lowest total cost where the union of the elements comprises U , i.e., to find

Ŝ = arg min
S′⊆S

∑
S ∈S′

c (S ) (1)

s.t.
⋃

S ∈S′
S = U . (2)

When we solve Optimal Force Path Cut, the goal is to cut all paths from s to t that are not longer
than p∗, and to do so by selecting edges for removal. This is a set cover problem. The universe U
is the set of all paths competing to be shortest. This set must be “covered” by removing all such
paths from the graph. If any of these paths remains, p∗ will not be the shortest path. The subsets in
S are edges: each edge represents the set of paths that use that edge. Cutting the edge is selecting
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Fig. 2. The Optimal Force Path Cut problem is an example of the Weighted Set Cover problem. In the bipartite

graph on the right, the square nodes represent paths and the circle nodes represent edges. Note that edges

along p∗ are not included. When the red-colored circle (i.e., edge (v7, t )) is removed, then the red-colored

squares (i.e., paths p1, p2, p3, and p4) are removed.

that set for inclusion in the union, i.e., removing all paths that include the edge. Figure 2 illustrates
the connection between the two problems.

Weighted Set Cover not only is APX-hard but also cannot be approximated within less than
a logarithmic factor [46]. There are, however, well-known approximation algorithms that enable
us to efficiently reach this asymptotic lower bound. The challenge for Force Path Cut is that the
universe of competing paths may be extremely large. We address this challenge in the remainder
of this section.

4.2 Approximation Algorithms for Fixed Path Sets

We consider two approximation algorithms for Weighted Set Cover, both of which achieve a log-
arithmic factor approximation for the optimal solution [49]. The first is a greedy method that
iteratively selects the most cost-effective set and includes it in the solution; i.e., it selects the set
where the number of uncovered elements divided by the cost is the lowest. We likewise iteratively
remove the edge that cuts the most uncut paths in P for the lowest cost. We refer to this procedure
as GreedyPathCover, and we provide its pseudocode in Algorithm 1. We have a fixed set of paths
P ⊂ Pp∗ . Note that this algorithm only uses costs, not weights: the paths of interest have already
been determined and we only need to determine the cost of breaking them. GreedyPathCover
performs a constant amount of work (in expectation, under the simple uniform hashing assump-
tion [15]) at each edge in each path in the initialization loop and the edge and path removal. We
use lazy initialization to avoid initializing entries in the tables associated with edges that do not
appear in any paths. Thus, populating the tables and removing paths takes time that is linear in
the sum of the number of edges over all paths, which we define as

MP :=
∑
p∈P

|Ep |, (3)

where Ep is the set of edges along path p. Finding the most cost-effective edge takes O (MP ) time
with a naïve implementation, and this portion is run at most once per path, leading to an overall
running time as follows.

Proposition 4.1. GreedyPathCover runs in O ( |P |MP ) time.
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35:8 B. A. Miller et al.

ALGORITHM 1: GreedyPathCover: Use a greedy approximation algorithm for Set Cover to identify a

set of edges to remove, whose cost is within a logarithmic factor of optimal.

Input: Graph G = (V ,E), costs c , target path p∗, path set P , edges Ekeep
Output: Set E ′ of edges to cut
TP ← empty hash table; // set of paths for each edge

TE ← empty hash table; // set of edges for each path

NP ← empty hash table; // path count for each edge

foreach e ∈ E do

TP [e]← ∅;
NP [e]← 0;

end

foreach p ∈ P do

TE [p]← ∅;
foreach e ∈ Ep \ Ekeep do

TP [e]← TP [e] ∪ {p};
TE [p]← TE [p] ∪ {e};
NP [e]← NP [e] + 1;

end

end

E ′ ← ∅;
while maxe ∈E NP [e] > 0 do

e ′ ← arg maxe ∈E NP [e]/c (e ); // find most cost-effective edge

E ′ ← E ′ ∪ {e ′};
foreach p ∈ TP [e ′] do

foreach e1 ∈ TE [p] do

NP [e1]← NP [e1] − 1; // decrement path count

TP [e1]← TP [e1] \ {p}; // remove path

end

TE [p]← ∅; // clear edges

end

end

return E ′

Note that the running time is output sensitive: it is dependent on which paths are selected as
constraints over the course of the algorithm. This is the case for all algorithms we propose in
this article. Using a more sophisticated data structure, like a Fibonacci heap, to hold the number
of paths for each edge would enable finding the most cost-effective edge in constant time, but
updating the counts when edges are removed would take O (logMP ) time, for an overall running
time of O (MP logMP ). The worst-case approximation factor is the harmonic function of the size
of the universe [49], i.e., H |U | =

∑ |U |
n=1 1/n, which implies that the GreedyPathCover algorithm has

a worst-case approximation factor of H |P | .
For the second approximation algorithm, we introduce the integer program formulation of Op-

timal Force Path Cut, modeled after the formulation for Weighted Set Cover. The objective is to
minimize the cost of the edges that are cut. Let c ∈ RM

≥0 be a vector of edge removal costs, where
each entry corresponds to an edge. The binary vector xcut ∈ {0, 1}M indicates the edges to be re-
moved. In the integer program formulation of Weighted Set Cover, each dimension corresponds
to a set, and each constraint corresponds to an element. Each element forms a linear constraint,
forcing at least one of the sets containing that element to be selected. Let Pp∗ be the set of paths
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that must be cut. For each path p ∈ Pp∗ , let xp ∈ {0, 1}M be the indicator vector for Ep . We solve
Optimal Force Path Cut via the integer program

x̂cut = arg min
xcut

c


xcut (4)

s.t. xcut ∈ {0, 1}M (5)

x

p xcut ≥ 1 ∀p ∈ Pp∗ (6)

x

keepxcut = 0. (7)

Equation (7) prevents any edges in the set Ekeep from being cut.2 With target paths, we set
Ekeep = Ep∗ , but we allow greater flexibility for the methods outlined in Section 5, which target
nodes or edges.

The second algorithm is a randomized algorithm that uses this formulation. As with the greedy
approach, we focus on a subset of paths P ⊂ Pp∗ . This algorithm relaxes the integer program
(Equations (4)–(7)) by replacing the binary constraint xcut ∈ {0, 1}M with a continuous constraint
xcut ∈ [0, 1]M . When we find the optimal solution x̂cut to the relaxed problem, we perform the
following randomized rounding procedure for each edge e:

(1) Treat the corresponding entry x̂cut (e ) as a probability.
(2) Draw �ln (4|P |)� i.i.d. Bernoulli random variables with probability x̂cut (e ).
(3) Cut e only if at least one random variable from step 2 is 1.

The resulting graph must be checked against two criteria. First, the constraints must all be
satisfied; i.e., all paths in P must be cut. In addition, the cost of cutting the edges must not exceed
ln (4|P |) times the fractional optimum, i.e., the optimal objective of the relaxed linear program

(LP). If one of these criteria is not satisfied, the randomized rounding procedure is run again.
As shown in detail by Vazirani, each criterion is satisfied with probability at least 3/4 [50]: the
probability that any path in P remains uncut is at most 1/4, as is the probability of the solution
exceeding ln (4|P |). Combining these probabilities, the probability of any randomized rounding
trial being unsatisfactory is at most 1/2; i.e., the probability of success is greater than or equal to
1/2. This results in the expected number of randomized rounding trials being at most 2. We present
pseudocode for this procedure, which we call RandPathCover, in Algorithm 2. Its running time is
dominated by solving the linear program, which results in the following proposition:

Proposition 4.2. RandPathCover runs in Õ ((MP + |P |2) |P |1/2 +M ) time in expectation.3

Proof. A linear program with a sparse constraint matrix A ∈ Rd×n (i.e., d constraints, n vari-
ables) can be solved in Õ ((nnz(A)+d2)d1/2 log ϵ−1) time [33], where nnz(·) is the number of nonze-
ros of a sparse matrix. In our case, the number of nonzeros is MP . The number of constraints is |P |,
and plugging into the formula, we have Õ ((MP + |P |2) |P |1/2) (for a fixed level of precision). Ini-
tializing xcut requires O (M ) time. Within the randomized rounding loop, the condition is checked
in O (M ) time, and the inner loop runs for O (log |P |) iterations. Within each iteration, edges are
selected, and we can consider only those edges where the probability of being selected is nonzero,
which leads to O (MP ) trials in each iteration. Creating an indicator vector is also restricted to
those edges used in the paths in P , so it takes O (MP ) time as well. Finally, computing not_cut can
be performed by a sparse matrix-vector multiplication of the constraint matrix with xcut, which
requiresO (MP ) time, and checking for the existence of a violated constraint in the resulting vector,

2This could also be achieved by removing these variables from the optimization.
3The notation Õ omits polylogarithmic factors from the O notation.
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ALGORITHM 2: RandPathCover: Use a relaxed linear program to approximate (within a logarithmic

factor) the optimal solution to Set Cover. This identifies a set of edges whose removal disrupts all paths

in P .
Input: Graph G = (V ,E), costs c, path p∗, path set P , edges Ekeep
Output: Set E ′ of edges to cut
x̂cut ← relaxed cut solution to (4)–(7) with paths P ;

xcut ← 0;

E ′ ← ∅;
not_cut← True;

while c


xcut > c


x̂cut (4 ln (4|P |)) or not_cut do

E ′ ← ∅;
for i ← 1 to �ln (4|P |)� do

// randomly select edges based on x̂cut

E1 ← {e ∈ E with probability x̂cut (e )};
E ′ ← E ′ ∪ E1;

end

xcut ← indicator vector for E ′;
not_cut← (∃p ∈ P where Ep ∩ E ′ � ∅);

end

return E ′

which requires O ( |P |) time. As mentioned earlier, the expected number of randomized rounding
trials is at most 2, which only scales the running time of the operations in the loop by a constant.
Adding the running times of all components together, we have a total running time of

Õ ((MP + |P |2) |P |1/2) +O (M +MP log |P | +MP + |P |) = Õ ((MP + |P |2) |P |1/2 +M ). (8)

�

4.3 Constraint Generation

Algorithms 1 and 2 work with a fixed set of paths P , but to solve Optimal Force Path Cut, enumer-
ation of the full set of relevant paths may be intractable. Consider, for example, the case where
G is a clique (i.e., a complete graph) and all edges have weight 1 except the edge joining s and
t , which has weight N . Among all simple paths from s to t , the longest path is the direct path
(s, t ) that only uses one edge; all other simple paths are shorter, including (N − 2)! paths of length
N − 1. Setting p∗ = (s, t ) makes the full set of constraints (i.e., one for each path that needs to be
cut) extremely large. However, if P were to include only those paths of length 2 and 3, we would
obtain the optimal solution with only (N − 2)2 + (N − 2) constraints. In general, we can solve
linear programming problems—even those with infinitely many constraints—as long as we have a
polynomial-time method to identify a constraint that a candidate solution violates. In a constraint
generation procedure, we iteratively solve a relaxed optimization problem that only considers a
subset of the constraints [4]. After solving the relaxed problem, we consult the polynomial-time or-
acle to determine if any constraint is unsatisfied. If so, this constraint is added and the optimization
is run again. The process terminates when the oracle finds that no constraint has been violated.

In our case, the oracle that provides a violated constraint, if one exists, is the shortest path al-
gorithm. After applying a candidate solution, we see if p∗ is the shortest path from s to t in the
resulting graph. If so, the procedure terminates. If not, the shortest path is added as a new con-
straint. This procedure works in an iterative process with the approximation algorithms to expand
P as new constraints are discovered. We refer to the resulting algorithm as PATHATTACK and provide
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ALGORITHM 3: PATHATTACK: Use constraint generation combined with the approximation algorithms

GreedyPathCover or RandPathCover to approximately solve Optimal Force Path Cut.

Input: Graph G = (V ,E), costs c , weights w , target path p∗, edges Ekeep, cover alg. Cvr
Output: Set E ′ of edges to cut
E ′ ← ∅;
P ← ∅;
c← vector from costs c (e ) for e ∈ E;

G ′ ← (V ,E \ E ′);
s, t ← source and destination nodes of p∗;
p ← shortest path from s to t in G ′ (not including p∗);
while p is not longer than p∗ do

P ← P ∪ {p};
E ′ ←Cvr(G, c,p∗, P );

G ′ ← (V ,E \ E ′);
p ← shortest path from s to t in G ′ (not including p∗) using weights w ;

end

return E ′

pseudocode in Algorithm 3. Depending on whether we use GreedyPathCover or RandPathCover,
we refer to the algorithm as PATHATTACK-Greedy or PATHATTACK-Rand, respectively.

The running time of PATHATTACK is computed as follows. The initialization takes O (M ) time.
Within the constraint generation loop, a path is added to P (time proportional to its length), the
Set Cover approximation algorithm is run (given by Propositions 4.1 and 4.2), edges are removed
(at most MP ), and a new shortest path is computed. We may have to compute the second shortest
path, but we use Eppstein’s algorithm for k shortest paths, even though it allows loopy paths: if the
second shortest path has a cycle, then p∗ is the unique shortest path. This runs in O (M +N logN )
time [22]. Checking path lengths costs at most O (N ) time. The constraint generation loop is run
|P | times. Combining all terms, we have the following asymptotic running times.

Proposition 4.3. PATHATTACK-Greedy and PATHATTACK-Rand run in O ( |P |2MP ) time and

Õ ((MP + |P |2) |P |3/2 + |P |M ) time, respectively.

4.4 PATHATTACK Convergence and Approximation Guarantees

While the approximation factor for Set Cover is a function of the size of the universe (all paths
that need to be cut), this is not the fundamental factor in the approximation in our case. The
approximation factor for PATHATTACK-Greedy is based only on the paths we consider explicitly.
Using only a subset of constraints, the worst-case approximation factor is determined by the size
of that subset. By the final iteration of PATHATTACK, however, we have a solution to Force Path
Cut with a budget within a factor of H |P | of the minimum, using |P | from the final iteration. This
yields the following proposition:

Proposition 4.4. The approximation factor of PATHATTACK-Greedy is at most H |P | times the

solution to Optimal Force Path Cut.

The worst-case approximation factor for PATHATTACK-Rand is logarithmic by construction:

Proposition 4.5. PATHATTACK-Rand yields a worst-case O (log |P |) approximation to Optimal

Force Path Cut.

There is also a variation of PATHATTACK-Rand that can guarantee polynomial-time convergence.
While the number of implicit constraints may be extremely large, each one is a standard linear
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inequality constraint, which implies that the feasible region is convex. Given a polynomial-time
oracle that returns a constraint violated by a proposed solution x̂cut ∈ [0, 1]M to the relaxed LP,
we could use Khachiyan’s ellipsoid algorithm (see [24]), which can solve a linear program with an
arbitrary (or infinite) number of linear constraints in a polynomial number of iterations [25]. We
use the randomized rounding procedure from Algorithm 2 to achieve such an oracle. In Appendix B,
we prove that this oracle terminates in polynomial time with high probability. This results in the
following theorem.

Theorem 4.6. PATHATTACK-Rand using the ellipsoid algorithm converges in polynomial time with

probability at least 1 − (1/|E |).

While this demonstrates that it is not NP-hard to solve Optimal Force Path Cut within a logarith-
mic approximation and shows that there is a version of PATHATTACK that is guaranteed to run in
polynomial time, we do not use the ellipsoid algorithm in our experiments, as other methods con-
verge much faster in practice. As discussed in Section 6, we use the Gurobi optimization package to
solve all optimization problems, and this software uses a combination of simplex and barrier meth-
ods for continuous linear programs. These methods do not, however, guarantee polynomial-time
convergence when using constraint generation with a set of constraints that is nonpolynomial
in size.

4.5 PATHATTACK for Node Removal

This article is focused on the case where edges are removed from a graph, but there are applications
in which removing nodes is more appropriate. In a computer network, for example, it may be
more likely for a node to be taken offline (e.g., via a denial-of-service attack) rather than to have
particular connections disallowed. Force Path Cut via node removal is a more complicated problem;
for a given p∗, there is not always a solution, regardless of the budget constraint. Consider, for
example, a triangle of nodes u, v , and w , where all weights are equal, and p∗ = (u,v,w ): none of
the three nodes can be removed because it would destroy p∗, so p∗ cannot be made the shortest
path due to the existence of the edge connecting u to w .

In cases where it is possible, however, we can still use PATHATTACK. The mapping to Weighted
Set Cover is analogous: a path is an element and a node corresponds to the set of paths from s to t
using that node. Given a graph and p∗, we can check if it is possible to make p∗ the shortest path
from s to t via node removal: if p∗ is the shortest path from s to t in the induced subgraph of the
nodes on p∗, then there is a solution. If not, there is none; the method to check has demonstrated
that, even if all other nodes are removed, p∗ is not the shortest path. If there is a possible solution,
we can run PATHATTACK for node removal and achieve the same convergence and approximation
guarantees as we have for edge removal. As this is ancillary to the main focus of the article, we
relegate further discussion of node removal to Appendix C.

4.6 Limited Attacker Capability

In practice, it is likely that there will be some edges the attacker will not be able to remove. We can
simply integrate this into the optimization formulation by setting the removal costs of these edges
to infinity. In the linear program formulation, this can be accomplished by omitting the columns
associated with the infinite-cost edges in Equations (4) through (7). As with the node removal case,
this will require a check to ensure a solution exists, which can be achieved by removing all edges
available to the attacker—other than those that are part of p∗—and observing whether p∗ becomes
the shortest path between its endpoints. If so, PATHATTACK can be used within the restricted edge
set to find an approximately optimal solution.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 35. Publication date: November 2023.



Attacking Shortest Paths by Cutting Edges 35:13

Fig. 3. A scenario where preserving the initial shortest path through e∗ results in a bad solution. Here, all

edges have the same weight and the labels are removal costs. The shortest path through e∗ is (s,v1,v2,v3, t )
and includes the edge {v3, t } with cost cmin. However, if we solve Optimal Force Path Cut with this path as

p∗, the k parallel paths on the top of the figure need to be cut, resulting in a cost of kcmax. If, on the other

hand, {v3, t } were removed, then the shortest path from s to t would go through e∗, at a factor of k cmax
cmin

lower

cost. If k is Ω(M ), the optimal solution preserving (s,v1,v2,v3, t ) is within a constant factor of removing all

edges, when a solution with the lowest possible cost was available.

5 HEURISTICS FOR FORCE EDGE CUT AND FORCE NODE CUT

Solving Optimal Force Edge Cut or Optimal Force Node Cut requires an additional layer of opti-
mization. Since these problems do not consider a fixed path, there is the possibility that a candidate
solution could be improved by cutting the current shortest path through the target. Take, for ex-
ample, the graph in Figure 3. The shortest path from s to t via e∗—i.e., (s,v1,v2,v3, t )—is four hops
and uses the sole low-cost edge. If we solve Optimal Force Path Cut with this path as p∗, all of
the k paths along the top of the figure have to be cut. If we remove the low-cost edge, all these
paths would be cut and the shortest path from s to t will go through e∗. Since that edge is being
preserved as part of p∗, however, each of the k parallel two-hop paths has to be cut individually
and incur a cost of cmax: if any of these paths remains, it is shorter than (s,v1,v2,v3, t ), so e∗ is not
on the shortest path. For large k , we see that this cost is within a constant factor of removing all
edges in the graph, when a low-cost solution was available. More concretely, note that M = 2k + 7.
The cost of the solution that preserves p∗ is

kcmax =
M − 7

2
cmax = Ω(Mcmax). (9)

Without the requirement to preserve p∗, we could remove {v3, t } and incur a cost of cmin, which
is the minimum possible cost for an attack that removes more than zero edges. The existence of
this scenario proves the following theorem.

Theorem 5.1. Solving Optimal Force Path Cut targeting the shortest path through e∗ (or v∗) may

yield a cost Ω(M cmax

cmin
) times greater than solving Optimal Force Edge Cut (or Optimal Force Node Cut),

where cmax and cmin are, respectively, the maximum and minimum edge removal costs.

To both minimize cost and allow the flexibility to alter the target path, we formulate a nonconvex
optimization problem. We start with a formulation of a linear program to obtain the shortest path
through e∗ (or v∗). Recall the linear program formulation of the shortest path problem (see, e.g.,
[3]). Using a graph’s incidence matrix, finding the shortest path can be formulated as a linear
program. In the incidence matrix, denoted by C, each row corresponds to a node and each column
corresponds to an edge. The column representing the edge from node u to node v contains −1
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in the row for u, 1 in the row for v , and zeros elsewhere. If the graph is undirected, the edge
orientation is arbitrary. To identify the shortest path from s to t , define the vector d ∈ {−1, 0, 1}N ,
which is −1 in the row corresponding to s , 1 in the row for t , and zeros elsewhere. The shortest
path is the solution to the integer linear program

x̂ = arg min
x

x


w (10)

s.t. x ∈ {0, 1}M (11)

Cx = d. (12)

The resulting vector x̂ is an indicator for the edges in the shortest path.4 Equation (12) ensures
that x̂ is a path, and the objective guarantees that the result has minimum weight. Due to the
structure of the incidence matrix, we can relax Equation (11) into the continuous interval x ∈
[0, 1]M . If the shortest path from s to t is unique, x̂ will be an indicator vector for the shortest path
despite this relaxation. If there are multiple shortest paths, x̂ will be a convex combination of the
vectors for these paths.

Recall that the goal of the attacker is to force travelers from s to t to traverse the edge e∗, so
we alter the formulation to find such a path. To obtain the shortest path through e∗, we perform a
similar optimization over two paths: the path from s to e∗ and the path from e∗ to t .5 Let e∗ = (u,v )
be the target edge. (In the undirected setting, we consider both (u,v ) and (v,u) independently and
choose the lower-cost solution.) Since we consider two paths, we have two vectors d1 and d2,
analogous to d in Equation (12). Assuming that s � u and t � v , d1 is −1 in the row of s and 1 in
the row of u, with zeros elsewhere, and d2 similarly has −1 in the row for v and 1 in the row for
t . (If s = u, d1 is all zeros, as is d2 if t = v .) Since we are optimizing two paths, we use two path
vectors, x1 ∈ [0, 1]M and x2 ∈ [0, 1]M .

It is not, however, sufficient to obtain a path from s to u and one from v to t : the concatenation
must also be a simple (acyclic) path. (Otherwise a shortest path algorithm would excise the cycle.)
To ensure the resulting path has no cycles, we add a constraint to ensure any node is visited at
most once. Since the path vectors are optimized over edges, we ensure any node occurs at most
twice in the set of edges, aside from the terminal nodes, which occur at most once. To obtain this
constraint, we use the matrix Cabs, which contains the absolute values of the incidence matrix; i.e.,
the ith row and jth column of Cabs contains |Ci j |. We also define dabs ∈ {1, 2}N to be 1 in the rows
associated with s , t , u, and v , and 2 elsewhere. This yields the linear program

x̂1, x̂2 = arg min
x1,x2

(x1 + x2)w (13)

s.t. x1, x2 ∈ [0, 1]M (14)

Cx1 = d1 (15)

Cx2 = d2 (16)

Cabs (x1 + x2) ≤ dabs. (17)

To solve Force Edge Cut, we use the same constraint generation technique as in PATHATTACK,
plus a nonlinear constraint to ensure the returned path does not contain any removed edges. As
in PATHATTACK, we use a vector xcut ∈ [0, 1]. In addition to constraining xcut to not cut e∗, we add

4In the undirected case, to denote traversal of an edge in the opposite direction of its arbitrary orientation, we consider
xpos and xneg, with Equation (12) replaced with C(xpos − xneg) = d and the objective replaced with (xpos + xneg)w. To

restrict traversing an edge in both directions, we add the constraint xpos + xneg ≤ 1
5For brevity, we focus on the solution to Optimal Force Edge Cut. The formulation for Optimal Force Node Cut is similar.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 35. Publication date: November 2023.



Attacking Shortest Paths by Cutting Edges 35:15

the nonconvex bilinear constraint that xcut is 0 anywhere x1 or x2 is nonzero. Finally, we again
consider a subset of paths P we want to ensure are cut. The resulting nonconvex program

x̂1, x̂2, x̂cut = arg min
x1,x2,xcut

(x1 + x2)w (18)

s.t. x1, x2 ∈ [0, 1]M (19)

xcut ∈ {0, 1}M (20)

Cxi = di , i ∈ {1, 2} (21)

Cabs (x1 + x2) ≤ dabs (22)

x

i xcut = 0, i ∈ {1, 2} (23)

xcut (e
∗) = 0 (24)

x

cutc ≤ b (25)

x

cutxp ≥ 1 ∀p ∈ P (26)

provides a partial solution (i.e., a solution for a subset of competing paths).
The constraint generation mechanism differs slightly from the Force Path Cut case. When solv-

ing Force Path Cut, there is a specific target path whose length does not change. For Force Edge
Cut, when a new path is added to the constraint set P , it may change the shortest uncut path
through e∗, and thus change the length threshold for inclusion. Thus, we want P to include all
paths that are not longer than the shortest path in the solution, which is not available until the
problem has been solved. As in PATHATTACK, each time we solve the optimization problem, we find
the shortest path after removing the edges indicated by x̂cut as well as e∗. If this path is not longer
than the shortest uncut path through e∗—the path indicated by x̂1, x̂2, and e∗—then this alternative
path must also be cut, and we add a constraint to achieve this. Algorithm 4 provides psuedocode
for this modified constraint generation procedure.

We note that solving for Equation (18) is a nonconvex mixed-integer optimization that is solved
using branch and cut, which has exponential running time in the worst case. We therefore set a
maximum running time tmax after which we choose the best solution found so far. We express
the algorithm running times in terms of this quantity, with the understanding that it stands in for
the truncated running time of an algorithm that has worst-case exponential running time. The
constraint generation procedure has a running time as follows.

Proposition 5.2. Algorithm 4 runs in O ( |P |(tmax +M + N logN )) time.

Proof. Instantiating C, w, c, d1, d2, Cabs, and dabs costs O (M + N ) time. Within the loop, we
first get the objective from Equation (18), which runs for at most tmax time. Extracting a single path
from x̂1 and x̂2 takesO (M ) (any edge is considered at most twice). Extracting p1 from the indicator
vectors takes O ( |Ep1 |) time. The size of E ′ is O (M ), and creating G ′ takes O (N +M ) time. Finding
the shortest path inG ′ takesO (M +N logN ) time, and adding a new constraint to P takesO ( |Ep2 |)
time. Combining all operations in the loop, we have

O (tmax +M + N + N logN + |Ep1 | + |Ep2 |) = O (tmax +M + N logN ). (27)

The number of iterations of the loop is |P |, and the asymptotic running time within the loop is
greater than the time required to instantiate the variables before the loop. This yields an overall
running time of O ( |P |(tmax +M + N logN )). �

To minimize the cost of the attack, we perform a binary search with respect to the budget b. We
obtain upper and lower bounds for the budget by running PATHATTACK targeting the shortest path

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 35. Publication date: November 2023.



35:16 B. A. Miller et al.

ALGORITHM 4: Constraint generation procedure for Force Edge Cut: iteratively solve a nonconvex

optimization problem for the current set of constraints, and add a new constraint if the current solution

is not feasible.
Input: Graph G = (V ,E), weights w , costs c , source s , destination t , target edge e∗, budget b
Output: Set E ′ of edges to cut
C← unweighted incidence matrix of G;

w← weight vector from w ; c← cost vector from c;

d1 ← s to e∗ vector; d2 ← e∗ to t vector;

Cabs ← |C|; dabs ← “no cycle” vector;

P ← ∅;
done← False;

while not done do

x̂1, x̂2, x̂cut ← solution to (18);

x̂1, x̂2 ← extract single path indicator from x̂1, x̂2 if not binary;

p1 ← path from x̂1, e∗, and x̂2;

E ′ ← edges with nonzeros in x̂cut;

G ′ ← (V ,E \ (E ′ ∪ {e∗}));
p2 ← shortest path from s to t in G ′ (using weights w);

if p2 is not longer than p1 then

P ← P ∪ {p2};
else

done← True;

end

end

return E ′;

through e∗. We run the standard PATHATTACK to get the upper bound, and remove the constraint
that the target path is uncut for the lower bound, instead only constraining that e∗ is not cut. If,
during the search, a new upper bound is discovered (i.e., a path through e∗ is discovered that re-
quires a budget smaller than the one under consideration), we create new upper and lower bounds
based on the new satisfactory path. Algorithm 5 outlines this procedure.

The binary search procedure in Algorithm 5 will terminate in a number of iterations that
is logarithmic in the cost ctotal =

∑
e ∈E c (e ). Within the loop, we run Algorithm 4, which by

Proposition 5.2 runs in O ( |P |(tmax + M + N logN )) time. In the case that Algorithm 4 cannot
be solved, we remove constraints, which takes O (MP ) = O ( |P |N ) time. Otherwise, we create a
new graph (O (N +M ) time), find the shortest path (O (M +N logN ) time), run PATHATTACK twice
(Õ ((MP + |P |2) |P |3/2 + |P |M ) time, by Proposition 4.3), and compute new budgets (O (M ) time).
Combining all terms within the loop, we have a running time of

O ( |P |(tmax +M + N logN ) +M +MP + N + N logN ) + Õ ((MP + |P |2) |P |3/2 + |P |M )

= Õ ((MP + |P |2) |P |3/2 + |P |(tmax +M + N )),
(28)

with logarithmic factors being dropped due to the Õ notation. The number of iterations in the loop
adds a logarithmic factor to the running time, which is also omitted within the notation, yielding
the following proposition.

Proposition 5.3. Algorithm 5 runs in Õ ((MP + |P |2) |P |3/2 + |P |(tmax +M + N )) time.

In addition to the combinatorial optimization method, we consider a heuristic algorithm that
seeks to identify the bottlenecks that prevent an optimal solution, as illustrated in Figure 3, and
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ALGORITHM 5: Combinatorial search for Optimal Force Edge Cut: perform a binary search over the

attack budget, applying Algorithm 4 at each candidate budget.

Input: Graph G = (V ,E), weights w , costs c , source s , destination t , target edge e∗, tol. ϵ
Output: Set E ′ of edges to cut
p ← shortest path from s to t via e∗;
Ep ← edges in p;

Eupper ←PATHATTACK(G, c,w,p,Ep , RandPathCover);

bupper ←
∑

e ∈Eupper
c (e );

Elower ←PATHATTACK(G, c,w,p, {e∗}, RandPathCover);

blower ←
∑

e ∈Elower
c (e );

while bupper − blower > ϵ do

bmid ← (bupper + blower)/2;

Emid ←Algorithm 4(G,w, c, s, t ,bmid);

if Algorithm 4 could not be solved then

blower ← bmid; // budget is too small
remove constraints accrued since last iteration

else

// budget is sufficient

G ′ ← (V ,E \ Emid);

p ← shortest path from s to t in G ′; // this path will include e∗

Etemp ←PATHATTACK(G, c,w,p,Ep , RandPathCover);

btemp ←
∑

e ∈Etemp
c (e );

if btemp < bmid then

bupper ← btemp;

Eupper ← Etemp;

else

bupper ← bmid;

Eupper ← Emid;

end

Etemp ←PATHATTACK(G, c,w,p, {e∗}, RandPathCover);

btemp ←
∑

e ∈Etemp
c (e );

if btemp > blower then

blower ← btemp;

Elower ← Etemp;

end

end

end

return Eupper; // return the best valid solution found

that is guaranteed to run in polynomial time. As in the combinatorial optimization, we leverage
PATHATTACK with and without constraints to avoid cutting the target path. In this case, after
running PATHATTACK while only preventing e∗ from being cut, we consider the edges on the
target path that are cut by PATHATTACK. For each of these edges, we consider the possibility of
either (1) removing the edge from the graph entirely or (2) marking it to never be removed. If
removal of any of these edges causes t to become unreachable from s , we add that edge to a list
of uncuttable edges. Otherwise, we consider the case in which each of these edges is removed,
each time finding the shortest path through e∗. We run PATHATTACK in each case and find the
edge whose removal results in the lowest upper bound on the removal budget. This edge is

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 35. Publication date: November 2023.



35:18 B. A. Miller et al.

ALGORITHM 6: Heuristic search for Optimal Force Edge Cut: iteratively solve PATHATTACK and identify

bottleneck edges to ignore.

Input: Graph G = (V ,E), weights w , costs c , source s , destination t , target edge e∗, tol. ϵ
Output: Set E ′ of edges to cut
Ealways ← ∅;
Enever ← ∅;
Ebest ← ∅;
cbest ← ∞;

repeat

G ′ ← (V ,E \ Ealways);

p ← shortest path from s to t via e∗ in G ′;
Ep ← edges in p;

Eupper ←PATHATTACK(G, c,w,p,Ep , RandPathCover);

bupper ←
∑

e ∈Eupper
c (e );

Elower ←PATHATTACK(G ′, c,w,p, {e∗} ∪ Enever, RandPathCover);

blower ←
∑

e ∈Elower∪Ealways
c (e );

if bupper < cbest then

cbest ← bupper;

Ebest ← Eupper;

end

if blower < bupper then

budget← empty hash table;

for e ∈ Ep ∩ Elower do

remove e from G;

E1 ←PATHATTACK(G, c,w,p,Ep , RandPathCover);

budget[e]← c (e ) +
∑

e1∈E1
c (e1);

add e to G;

end

if ∃e ∈ Ep ∩ Elower where removing e disconnects s and t then

Enever ← Enever ∪ {e};
else

enew ← arg mine ∈Ep∩Elower
budget[e];

Ealways ← Ealways ∪ {e};
end

end

until cbest ≤ blower + ϵ ;

return Ebest;

added to a list of edges that will always be removed. This procedure terminates when the upper
and lower bounds converge. A pseudocode description of this heuristic search is provided in
Algorithm 6.

In each iteration of Algorithm 6, PATHATTACK is run as many as N times (once for every edge in
p, the shortest path from s to t through e∗), yielding a total running time of Õ (N ((MP + |P |2) |P |3/2+

|P |M )). This dominates the interior of the loop, with the exception of finding p: this also involves
solving a sparse linear program with O (M ) nonzeros and O (N ) constraints. Following the same
formula as we used for PATHATTACK, this results in a running time of Õ ((M+N 2)N 1/2). The overall
number of iterations in the loop is bounded byM (an edge is removed every iteration that a solution
is not found), which results in an overall running time as follows.
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Proposition 5.4. Algorithm 6 runs in Õ (MN ((MP + |P |2) |P |3/2 + |P |M ) + (M +N 2)MN 1/2) time.

As with PATHATTACK, this guarantees a polynomial running time if the ellipsoid algorithm is
used, but in our experiments we use other methods that are faster in practice.

6 EXPERIMENTS

This section presents baselines, datasets, experimental setup, and results.

6.1 Baseline Methods

We consider two simple greedy methods as baselines for assessing performance of PATHATTACK.
Each of these algorithms iteratively computes the shortest path p between s and t ; if p is not longer
than p∗, it uses some criterion to cut an edge from p. When we cut the edge with minimum cost,
we refer to the algorithm as GreedyCost. We also consider a version based on the most vital edge
of the current shortest path [44], which is the edge that, if removed, results in the greatest distance
between the endpoints. Ifp is the current shortest path from s to t , the score of edge e is the distance
from s to t if e were removed divided by the cost of e . We iteratively remove the edge with the
highest score until p∗ is the shortest path. This version of the algorithm is called GreedyMVE. In
either case, edges from p∗ are not allowed to be cut. (In prior work [42], we also considered using
the eigenscore of each edge [48], but this consistently underperformed GreedyCost.) We provide
pseudocode that encompasses both baselines in Algorithm 7. The baseline method to solve Optimal
Force Edge Cut (or Optimal Force Node Cut) is to identify the shortest path through e∗ (orv∗), use
this path as p∗, and solve PATHATTACK.

In each iteration of outer loop in Algorithm 7, we find up to two shortest paths, with a running
time of O (M + N logN ). For each edge in the shortest path, we either do a constant amount of
work (in the case of GreedyCost) or find a new distance from s to t (for GreedyMVE), which requires
O (M +N logN ). In the case of GreedyMVE, this occurs once for each edge on all paths we identify
as constraints, defined as MP in Equation (3). This results in the following asymptotic running
times.

Proposition 6.1. GreedyCost runs in O ( |P |(M + N logN )) time and GreedyMVE runs in

O (MP (M + N logN )) time.

6.2 Synthetic and Real Networks

We use both synthetic and real networks in our experiments. For the synthetic networks, we
run seven different graph models to generate 100 synthetic networks of each model. We pick pa-
rameters to yield networks with similar numbers of edges (≈ 160K). We use 16,000-node Erdős–
Rényi graphs, both undirected (ER) and directed (DER), with edge probability 0.00125; 16,000-node
Barabási–Albert (BA) graphs with average degree 20; 16,000-node Watts–Strogatz (WS) graphs
with average degree 20 and rewiring probability 0.02; 214-node stochastic Kronecker (KR) graphs;
285 × 285 lattices (LAT); and 565-node complete (COMP) graphs.

We use seven weighted and unweighted networks. The unweighted networks are the Wik-

ispeedia (WIKI) graph [53], an Oregon autonomous system (AS) network [34], and a Penn-

sylvania road network (PA-ROAD) [35]. The weighted networks are Central Chilean Power

Grid (GRID) [32], Lawrence Berkeley National Laboratory network data (LBL), the North-

east US Road Network (NEUS), and the DBLP coauthorship graph (DBLP) [5]. All real net-
works are undirected except for WIKI and LBL. The networks range from 444 edges on 347 nodes
to over 8.3M edges on over 1.8M nodes, with average degree ranging from 2.5 to 46.5 and triangle
count ranging from 40 to nearly 27M. Further details on the real and synthetic networks—including
URLs to the real data—are provided in Appendix D.
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ALGORITHM 7: Baseline algorithm: implement GreedyCost or GreedyMVE depending on the parameter

“edge_metric.” Both methods iteratively choose an edge to remove from the current shortest path until

the target path p∗ is the shortest.

Input: Graph G = (V ,E), weights w , costs c , target path p∗, string edge_metric
Output: Set E ′ of edges to cut
s ← first node of p∗;
t ← last node of p∗;
E ′ ← ∅;
p ← shortest path from s to t in G ′ = (V ,E \ E ′) with weights w (other than p∗);
while p∗ is not shorter than p do

best_score← 0;

e1 ← ∅;
for e ∈ Ep \ Ep∗ do

current_score← 1;

if edge_metric = ‘‘MVE’’ then

current_score← distance from s to t in G ′′ = (V ,E \ (E ′ ∪ {e})) with weights w ;

end

current_score←current_score/c (e );

if current_score > best_score then

best_score← current_score;

e1 ← e;

end

end

E ′ ← E ′ ∪ {e1};
p ← shortest path from s to t in G ′ = (V ,E \ E ′) with weights w (other than p∗);

end

return E ′;

For the synthetic networks and unweighted real networks, we consider three different edge-
weight assignment schemes with different levels of entropy: uniform random weights (high en-
tropy), Poisson random weights (lower entropy), or equal weights (no entropy). For Poisson
weights, each edge e has an independently random weight we = 1 +w ′e , where w ′e is drawn from
a Poisson distribution with rate parameter 20. For uniform weights, each weight is drawn from
a discrete uniform distribution of integers from 1 to 41. This yields the same average weight as
Poisson weights.

6.3 Experimental Setup

For each graph—considering graphs with different edge-weighting schemes as distinct—we run
100 experiments. In each experiment, we select s and t uniformly at random among all nodes, with
the exception of LAT, PA-ROAD, and NEUS, where we select s uniformly at random and select t
at random among nodes 30 to 50 hops away from s , where the distance is selected uniformly at
random from within the range.6 Given s and t , we identify the shortest simple paths and use the
100th, 200th, 400th, and 800th shortest as p∗ in four experiments. For the large grid-like networks
(LAT, PA-ROAD, and NEUS), this procedure is run using only the 60-hop neighborhood of s . We
focus on the case where the edge removal cost is equal to the weight (distance). For Force Edge Cut

6This alternative method of selecting the destination was used due to the computational expense of identifying successive
shortest paths in large grid-like networks.
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and Force Node Cut, we consider consecutive shortest paths from s to t until we see five edges (or
nodes) not on the initial shortest path. The fifth edge (or node) we see that was not on the original
shortest path is used as e∗ (or v∗).

When running Algorithm 4, we let the nonconvex optimization (18) run for no more than 10
minutes. If a feasible point is not found in that time, we assume the model is infeasible and increase
the budget. We stop the procedure every 30 seconds to check the best candidate solution and see
if it satisfies our criteria. In addition, we stop the optimization if the objective matches the length
of our best incumbent solution. If we consider a budget for over 8 hours, we consider it infeasible
and increase the lower bound. The entire procedure is terminated, and the lowest upper bound
returned, if it is still running after 24 hours.

The experiments were run on Linux machines with 32 cores and 192 GB of memory. The LP
in PATHATTACK-Rand was implemented using Gurobi 9.1.1, and shortest paths were computed us-
ing shortest_simple_paths in NetworkX.7 The combinatorial search method is set to use four
threads.

6.4 Pathattack Results

We treat the result of GreedyCost as our baseline cost and report the cost of other algorithms’
solutions as a reduction from that baseline. In all experiments, we set edge removal costs equal to
the weights. Figure 4 shows the results on both synthetic and real unweighted graphs, which have
had synthetic weights added to the edges. Figure 5 shows the results on real weighted networks.
In these figures, the 800th shortest path is used as p∗; other results were similar and omitted for
brevity.

Considering the difference between the two baselines, we see rather similar performance in
terms of cost in most cases. While using the most vital edge-based baseline often provides some
improvement over cost alone, it never yields better than a 10% improvement over GreedyCost. This
is true despite having considerably greater running time. It is important to note that our GreedyMVE
implementation is not optimized: it is implemented in NetworkX and uses a brute-force technique
to find the most vital edge (i.e., find the shortest path after removing each candidate edge from the
graph). The cost results, however, suggest that even an optimized version would provide relatively
little improvement over greedily removing the least costly edge.

Comparing the cost achieved by PATHATTACK to those obtained by the greedy baseline, we ob-
serve some interesting phenomena. Lattices and road networks, for example, have a similar trade-
off: PATHATTACK provides a mild improvement in cost at the expense of an order of magnitude
additional processing time. Considering that PATHATTACK-Rand usually results in the optimal so-
lution (over 86% of the time), this means that the baselines often achieve near-optimal cost with a
naïve algorithm. On the other hand, ER, BA, and KR graphs follow a trend more similar to the AS
and WIKI networks, particularly in the randomly weighted cases: the cost is cut by a substantial
fraction—enabling the attack with a smaller budget—for a similar or smaller time increase. This
suggests that the time/cost tradeoff is much less favorable for less clustered, grid-like networks
(note the clustering coefficients in Appendix D).

Cliques (COMP) are particularly interesting in this case, showing a phase transition as the en-
tropy of the weights increases. When edge weights are equal, cliques behave like an extreme ver-
sion of the road networks: an order of magnitude increase in runtime with no decrease in cost. With
Poisson weights, PATHATTACK yields a slight improvement in cost, whereas when uniform random
weights are used, the clique behaves much more like an ER or BA graph. In the unweighted case,

7Gurobi is at https://www.gurobi.com. NetworkX is at https://networkx.org. Code from the experiments is at https://github.
com/bamille1/PATHATTACK.
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Fig. 4. PATHATTACK results on synthetic and real unweighted graphs with synthetic weights added, in terms

of edge removal cost (left column) and running time (right column). Lower is better for both metrics. Cost is

plotted as a proportion of the cost using the GreedyCost baseline. Bar heights are means across 100 trials and

error bars are standard errors. Results are shown with equal weights on all edges (top row) and edge weights

drawn from Poisson (middle row) and uniform (bottom row) distributions. PATHATTACK-Greedy operated on

lattices with equal weights for over 1 day without converging, so results were not collected for this case.

PATHATTACK yields a substantial reduction in cost in ER, BA, KR, WIKI, and AS graphs, while the baseline is

often near optimal for LAT and PA-ROAD.

p∗ is a three-hop path, so all other two- and three-hop paths from s to t must be cut, which the
baseline does efficiently. Adding Poisson weights creates some randomness, but most edges have a
weight that is about average, so it is still similar to the unweighted scenario. With uniform random
weights, we get the potential for much different behavior (e.g., short paths with many edges) for
which the greedy baseline’s performance suffers.

There is an opposite, but milder, phenomenon with PA-ROAD and LAT: using higher-entropy
weights narrows the cost difference between the baseline and PATHATTACK. This may be due to the
source and destination being many hops away. With the terminal nodes many hops apart, many
shortest paths between them could go through a few low-weight (thus low-cost) edges. A very
low-weight edge between two nodes would be very likely to occur on many of the shortest paths,
and would be found in an early iteration of the greedy algorithm and removed, while considering
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Fig. 5. PATHATTACK results on real weighted graphs in terms of edge removal cost (left) and running time

(right). Lower is better for both metrics. Cost is plotted as a proportion of the cost using the GreedyCost
baseline. Bar heights are means across 100 trials and error bars are standard errors. Note the difference in

scale on the vertical axes from Figure 4. PATHATTACK yields a substantial improvement in performance for

DBLP, while the baseline performs well on the other (less clustered) networks.

more shortest paths at once would yield a similar result. We also note that, in the weighted graph
data, LBL and GRID behave similarly to road networks. Among our real datasets, these have a low
clustering coefficient (see Appendix D). This lack of overlap in nodes’ neighborhoods may lead
to better relative performance with the baseline, since there may not be a great deal of overlap
between candidate paths. With the real datasets, we also see near-optimal performance with the
baseline method. Take the LBL dataset for example. In 60 out of 100 trials aggregated for this dataset
in Figure 5, PATHATTACK-Rand yields the optimal solution. Among these trials, the GreedyCost
baseline yields, on average, about a 9.3% increase in cost. This is very similar to the 7.1% increase in
cost that the baseline yields among all trials. This demonstrates that, in many real-world networks,
greedy methods are highly effective.

6.5 Results Targeting a Node

In this section, we present results for the case where the adversary targets a nodev∗. The baseline
in these experiments is to run PATHATTACK using the shortest path from s to t through v∗ as p∗.
We call this method PATHATTACK-v∗. We present results using this method along with results for
the heuristic search method (Algorithm 6) and combinatorial optimization.

In most cases, all three methods yield a solution of the same cost. To clarify the performance dif-
ferences, we separate these cases from those where the costs differ between methods. For the case
where all methods result in the same cost, we show running time results on unweighted graphs in
Figure 6. As when targeting paths, lattices and road networks are similar: they are the only graphs
where the heuristic methods do not match the result of the combinatorial optimization a majority
of the time, largely due to the equal-weight case. Watts–Strogtaz graphs, which have a lattice-like
component, also frequently have different results across methods. Figure 7 illustrates cases where
not all algorithms yield the same cost. Again, lattices and roads are distinct: here they see a much
more substantial improvement from the combinatorial optimization than heuristics, with Watts–
Strogatz graphs also sometimes being similar. There are many cases where the heuristic search
yields the same result as the PATHATTACK-v∗ baseline. Upon inspection, many of these cases result
from multiple shortest paths usingv∗: the heuristic overlooks one solution because it does not cut
the current p∗, which results in no edges to consider in the inner loop of Algorithm 6.

For weighted networks, running time in cases where all methods yield the same cost is plotted
in Figure 8. In all cases, the three algorithms usually find equal-cost solutions, though the combi-
natorial method frequently times out. The power grid network has a particularly large increase in
running time when using the combinatorial method. In cases where not all methods yield the same
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Fig. 6. Running time results on unweighted networks when targeting a specific node in cases where all three

algorithms yield the same cost. Lower time is better. Annotations are the proportion of 100 trials where all

costs are the same. Bar heights are means across these trials and error bars are standard errors. Results are

shown with equal weights on all edges (top) and edge weights drawn from Poisson (middle) and uniform

(bottom) distributions. With the exception of LAT and PA-ROAD, the baseline method matches the combi-

natorial optimization in a majority of cases and has a substantially smaller time requirement.

cost, shown in Figure 9, the heuristic search achieves the same cost as the combinatorial search
more often than in the unweighted graphs. In fact, on DBLP, the combinatorial search typically
times out and the heuristic search outperforms it.

7 CONCLUSION

In this article, we introduce the Force Path Cut, Force Edge Cut, and Force Node Cut problems,
in which edges are removed from a graph in order to make the shortest path from one node to
another, respectively, be a specific path, use a specific edge, or use a specific node. We show that
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Fig. 7. Results on unweighted networks when targeting a specific node in cases where not all node-targeting

algorithms yield the same cost, in terms of edge removal cost (left column) and running time (right column).

Lower is better for both metrics. Bar heights are means across these trials and error bars are standard errors.

Results are shown with equal weights on all edges (top row) and edge weights drawn from Poisson (middle

row) and uniform (bottom row) distributions. Note that COMP with equal and Poisson weights and ER with

Poisson weights are not included, as the methods matched in all trials. The greatest cost reductions from

using combinatorial search often coincide with large running time increases.

the optimization versions of all three problems are hard to approximate, but that a logarithmic
approximation exists for Optimal Force Path Cut via existing approximation algorithms for Set
Cover. We leverage these methods to develop a new algorithm called PATHATTACK and demonstrate
its efficacy in solving Optimal Force Path Cut using a thorough set of experiments on real and
synthetic networks. We also use PATHATTACK as part of a heuristic search method to solve Optimal
Force Edge Cut and Optimal Force Node Cut, which yields performance similar to a much more
computationally intensive combinatorial search.

There is a gap between the approximation factor of PATHATTACK and the lower bound implied
by APX-hardness; it remains an open problem whether Optimal Force Path Cut is APX-complete
or if there is no constant-factor approximation. The best possible polynomial-time approximation
factor for 3-Terminal Cut is 12/11 [17], and our results imply that the best such approximation
for Optimal Force Path Cut is between 12/11 and logarithmic. Other approximation algorithms,
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Fig. 8. Running time results on weighted networks when targeting a specific node in cases where all three

algorithms yield the same cost. Lower time is better. Annotations are the proportion of 100 trials where all

costs are the same. Bar heights are means across these trials and error bars are standard errors. In contrast to

the unweighted networks, the heuristic methods match the combinatorial optimization in a large majority

of cases, even in grid-like networks.

Fig. 9. Results on weighted networks when targeting a specific node in cases where not all node-targeting

algorithms yield the same cost, in terms of edge removal cost (left) and running time (right). Lower is better

for both metrics. Bar heights are means across these trials and error bars are standard errors. Heuristic search

in these cases is competitive with combinatorial search, even outperforming it sometimes due to timeouts.

such as those for hypergraph vertex cover [31], may be useful in some scenarios, such as very
small-diameter graphs. In addition, while we provide upper bounds for the running times of all
algorithms, the experimental results suggest these are pessimistic and could be tightened. In partic-
ular, in the cases where we solve sparse linear programs, the structure of the sparse matrices could
potentially be exploitable to achieve tighter bounds. Future work will include defenses against
PATHATTACK to make networks more robust against adversarial manipulation.

APPENDICES

A PROOF OF THEOREM 3.1

A.1 Proof for Undirected Graphs

As noted in Section 3.1, to prove Theorem 3.1, we first prove that Optimal Force Path Cut is APX-
hard for undirected graphs.

Lemma A.1. Optimal Force Path Cut is APX-hard for undirected graphs, including the case where

all weights and all costs are equal.

To prove Lemma A.1, we reduce 3-Terminal Cut to Force Path Cut via a linear reduction. Let
G = (V ,E) be an undirected graph, where all weights are equal. We also have three terminal nodes
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s1, s2, and s3 ∈ V . Since we are proving the problem is APX-hard, we consider the optimization
versions of both problems, where the goal is to minimize the budget. Thus, the goal of 3-Terminal
Cut is to find the smallest set E ′ such that s1, s2, and s3 are disconnected inG ′ = (V ,E\E ′). Dahlhaus
et al. show in [18] that 3-Terminal Cut is APX-hard, even when all weights are equal.8

We propose a linear reduction from 3-Terminal Cut to Force Path Cut. As discussed in [18], a
linear reduction from problem A to problem B consists of two functions f and д, where f maps
an instance of A to an instance of B, and д maps a solution of B to a solution of A. To be a linear
reduction, the following conditions must hold:

(1) The functions f and д can be computed in polynomial time.
(2) Given A, an instance of problem A, the optimal solution to B = f (A) must be at most α

times the optimal solution for A, for a constant α > 0, i.e., opt(B) ≤ α · opt(A).
(3) Given a solution y to B = f (A), x = д(y) is a solution to A such that

|cost(x ) − opt(A) | ≤ β |cost(y) − opt(B) |
for a constant β > 0.

We start by defining f , the function from an instance of 3-Terminal Cut to an instance of Optimal
Force Path Cut. We are given an instance of 3-Terminal Cut as described above. Let N = |V | and
M = |E |. As shown in Figure 1, we add M + 1 new paths of length N from s1 to s2, and the same
from s2 to s3. We add a single path of length 2N −1 from s1 to s3 and make this path p∗. Algorithm 8
provides pseudocode for this procedure.

Applying Algorithm 8 to an optimization instance of 3-Terminal Cut (G, s1, s2, s3), we get
(G ′, s1, s3,p

∗), an instance of Optimal Force Path Cut. Note that, in these instances, all edge weights
and removal costs are equal to 1. From the instance of Optimal Force Path Cut, we get a solution
E ′ consisting of edges whose removal results in p∗ being the shortest path from s1 to s3. We also
have a function that maps a solution to Optimal Force Path Cut to a solution to 3-Terminal Cut:
include all edges in E ′ that existed in the original graph, i.e.,

д(E ′) =
⎧⎪⎨
⎪
⎩

E ′ ∩ E if |E ′ | < M

E otherwise,
(29)

where E ′ is the solution to Optimal Force Path Cut and E is the original edge set from the 3-
Terminal Cut instance. (The edge set E is not a parameter of д, as it is fixed within the context of
the problem.)

We can see that both functions satisfy condition (1): the function д simply removes up to M
edges from a set, and the body of each loop takes constant time in Algorithm 8, and there are two
nested loops taking O (MN ) time and a final loop taking O (N ) time. To show that this reduction
satisfies condition (2), we first prove the following Lemma.

Lemma A.2. Let A be an instance of 3-Terminal Cut and E ′ be a solution to A. Then E ′ is also a

solution to f (A).

Proof. Since E ′ is a solution to A, the graph G ′ = (V ,E \ E ′) has at least three connected
components, where one contains s1, one contains s2, and one contains s3. The edges Enew added
by Algorithm 8 (in the creation of Ĝ) create paths between the connected components but do not
connect to any vertices in the original graph other than s1, s2, and s3. Thus, there are two modes of
traversing from s1 to s3 via a simple path: (1) traverse the new path from s1 to s3 denoted as p∗ by
Algorithm 8, or (2) move from s1 to s2 via edges from Enew, then from s2 to s3 via edges from Enew.

8More specifically, it is proved in [18] that the problem is MAX SNP-hard, but this implies APX-hardness: if a problem is
MAX SNP-hard, it has no polynomial-time approximation scheme unless P = NP.
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ALGORITHM 8: Mapping from 3-Terminal Cut to Optimal Force Path Cut.

Input: Graph G = (V ,E), terminals s1, s2, s3

Output: Graph Ĝ, target path p∗

V̂ ← V ; N ← |V |;
Ê ← E; M ← |E |;
// Create paths from s1 to s2

for i ← 1 to M + 1 do

vprev ← s1;

for j ← 1 to N − 1 do

vi j,1 ← new node;

V̂ ← V̂ ∪ {vi j,1};
Ê ← Ê ∪ {{vprev,vi j,1}};
vprev ← vi j,1;

end

Ê ← Ê ∪ {{vprev, s2}};
end

// Create paths from s2 to s3

for i ← 1 to M + 1 do

vprev ← s2;

for j ← 1 to N − 1 do

vi j,2 ← new node;

V̂ ← V̂ ∪ {vi j,2};
Ê ← Ê ∪ {{vprev,vi j,2}};
vprev ← vi j,2;

end

Ê ← Ê ∪ {{vprev, s3}};
end

// Create p∗ (a path from s1 to s3)

vprev ← s1;

p∗ ← empty path;

for j ← 1 to 2N − 2 do

vi j,3 ← new node;

V̂ ← V̂ ∪ {vi j,3};
Ê ← Ê ∪ {{vprev,vi j,3}};
append {vprev,vi j,3} to the end of p∗;
vprev ← vi j,3;

end

Ê ← Ê ∪ {{vprev, s3}};
append {vprev, s3} to the end of p∗;
return Ĝ = (V̂ , Ê), s1, s3, p∗;

By construction, the path directly from s1 to s3 (the path added in the final loop of Algorithm 8)
passes through 2N − 2 intermediate nodes, having a length of 2N − 1. Taking the indirect route
first requires taking one of the M + 1 paths from s1 to s2, which has length N , then taking one of
the M + 1 paths from s2 to s3, which also has length N . Thus, the total length of any path via s2 is
2N , which is longer than p∗. Thus, p∗ is the shortest path from s1 to s3 in Ĝ ′ = (V̂ , Ê \ E ′), so E ′ is
a solution to f (a). �
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An immediate consequence of Lemma A.2 is that condition (2) is satisfied, as stated formally
below.

Corollary A.3. If A is an instance of 3-Terminal Cut, then opt( f (A)) ≤ opt(A), satisfying

condition (2) with α = 1.

Proof. Let E ′ be the optimal solution to A, i.e., |E ′ | = opt(A). By Lemma A.2, E ′ also solves
f (A). Thus, the optimal solution to f (A) can be no larger than |E ′ |, and therefore opt( f (A)) ≤
opt(A). �

While the above corollary is sufficient to satisfy condition (2), we can make a stronger statement
that is useful to prove condition (3): the optimal solutions of the two problems are the same.

Lemma A.4. For an instance of 3-Terminal Cut A, opt(A) = opt( f (A)). In particular, if E ′ is an

optimal solution for A, then it is also an optimal solution for f (A).

Proof. Let G = (V ,E) be the graph in A, and Ĝ = (V̂ , Ê) be the graph in problem f (A). Let
Ê ′ be an optimal solution to f (A). Partition Ê ′ into the edges that occur in the original graph
E1 = Ê ′ ∩ E, and those that do not, E2 = Ê ′ \ E. By Lemma A.2, if E1 is a solution to A, it is also a
solution to f (A). Therefore, if E1 is a solution to A, E2 = ∅. (Otherwise E1 is a solution to f (A)
and |E1 | < |Ê ′ |, which contradicts the assumption that Ê ′ is an optimal solution to f (A).) Thus,
we focus on the case where E1 is not a solution toA. In this case, within the graphG1 = (V ,E \E1),
not all terminals s1, s2, and s3 are disconnected. If there is a path from s1 to s3, the length of this
path is at most N −1, which is shorter than p∗. This contradicts the assumption that Ê ′ is a solution
to f (A)—E2 only includes edges not in the original graph, so the shorter path will still exist when
edges from E2 are removed. There are two other possibilities: s1 and s2 are connected in G1, or s2

and s3 are connected. If s1 and s2 are connected, there is a path between the terminals of length at
most N − 2 (excluding s3). Algorithm 8 inserts M + 1 independent parallel paths from s2 to s3 in Ê.
If any of these paths remains, there is a path in Ĝ ′ = (V̂ , Ê \ Ê ′) from s2 to s3 of length N , which
would create a path from s1 to s3 of length at most 2N −2, which is shorter than p∗. Thus, Ê ′ would
have to include at least one edge from all M +1 parallel paths from s2 to s3 inserted by Algorithm 8.
This means that |E2 | ≥ M + 1, implying that |Ê ′ | ≥ M + 1. This contradicts the assumption that Ê ′

is an optimal solution to f (A): any solution to A is a solution to f (A) and its cost is at most M .
The analogous argument holds if s2 and s3 are connected in G1. Thus, a solution to f (A) cannot
be optimal if it does not include a solution to A, implying that opt( f (A)) ≥ opt(A). This in
conjunction with Corollary A.3 proves that the optima of A and f (A) are the same. �

To show that the reduction also satisfies condition (3), we first prove the following lemma.

Lemma A.5. LetA be an instance of 3-Terminal Cut where all weights are equal, with G = (V ,E).
Let B = f (A) be the instance of Optimal Force Path Cut obtained by applying Algorithm 8 to A,

with Ĝ = (V̂ , Ê). Further, let Ê ′ be a solution to B. Then д(Ê ′) is a solution to A.

Proof. The case where |Ê ′ | ≥ M = |E | is trivial: if all edges are removed, then the terminals
are disconnected. With the assumption that |Ê ′ | < M , partition Ê ′ into two parts: E1 = Ê ′ ∩ E and
E2 = Ê ′ \ E1; i.e., E1 is the edges in the solution to B that existed in the original graph, and E2

consists of the edges in the solution added by f (Algorithm 8). Since Ê ′ is a solution to B, p∗ is the
shortest path from s1 to s3 in the graph Ĝ ′ = (V̂ , Ê \ Ê ′). The length of p∗ is 2N − 1. Assume E1

is not a solution to A, i.e., that s1, s2, and s3 are not disconnected in G1 = (V ,E \ E1). Then there
would be a path between at least two of the three terminals in G1. If there were a path from s1 to
s3, the length of this path would be at most N − 1 < 2N − 1, so this contradicts the assumption
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that p∗ is the shortest path in Ĝ ′. For the other cases, assume there is no such path (i.e., s1 and s3

are disconnected in G1). Suppose there is a path between s1 and s2. This path’s length is at most
N − 2 (since it cannot include s3). In addition, either (1) one of the paths from s2 to s3 added by
f remains or (2) all M + 1 such paths were cut, which contradicts our assumption since it would
require Ê ′ to contain at least M +1 edges. The paths from s2 to s3 added in Algorithm 8 have length
N , thus creating a path from s1 to s3 with length at most 2N − 2 < 2N − 1, which also contradicts
the assumption that p∗ is the shortest path. A similar argument is made for the case where a path
from s2 to s3 remains in G1: such a path would have length at most N − 2, and at least one of the
paths added between s1 and s2 remains, resulting in a path of length at most 2N − 2. Thus, in the
case where |Ê ′ | < M , Ê ′ ∩ E is a solution to A. �

With this result, we can show that the reduction meets the final criterion.

Lemma A.6. If A is an instance of 3-Terminal Cut with G = (V ,E), y is a solution to B = f (A),
and x = д(y), then

|cost(x ) − opt(A) | ≤ |cost(y) − opt(B) |,
satisfying (3) with β = 1.

Proof. Let Ê ′ be a solution to B, and partition Ê ′ into E1 = Ê ′ ∩ E and E2 = Ê ′ \ E1. From
Lemma A.5, we know that д(Ê ′) solves A. From Lemma A.4, we also know the optimal solutions
are the same size. If |Ê ′ | ≥ M , then д(Ê ′) = E, and we have

��|E | − opt(A)�� = |M − opt(A) | = |M − opt(B) | ≤ ���|Ê
′ | − opt(B)��� , (30)

so the condition holds. If |Ê ′ | < M , we have

���|Ê
′ ∩ E | − opt(A)��� =

���|Ê
′ ∩ E | − opt(B)��� ≤

���|Ê
′ | − opt(B)��� , (31)

which proves the claim. �

These intermediate results show that the proposed reduction is a linear reduction of 3-Terminal
Cut to Force Path Cut, implying that Optimal Force Path Cut is APX-hard.

Proof of Lemma A.1. By construction, f , as described by Algorithm 8, takes an instance of 3-
Terminal Cut and maps it to an instance of Force Path Cut. As shown in the pseudocode, this
takesO (MN ) time to compute. By Lemma A.5, д maps a solution to the instance of Force Path Cut
obtained via f to a solution to the original 3-Terminal Cut problem. The procedure of removing the
original edge set takes polynomial time that varies depending on the data structure, e.g., O (MN )
per removal in an adjacency list. Thus, f andд are appropriate mappings that take polynomial time
to compute, satisfying condition (1). By Corollary A.3, the reduction satisfies condition (2), and by
Lemma A.6, it satisfies (3). This means that f and д provide a linear reduction from 3-Terminal
Cut to Force Path Cut. Since optimizing 3-Terminal Cut is APX-hard, Optimal Force Path Cut for
undirected graphs is APX-hard as well. �

A.2 Proof for Directed Graphs

To prove that Optimal Force Path Cut is APX-hard for directed graphs, we formulate a linear
reduction from Force Path Cut for undirected graphs to the directed case. The linear reduction
in this case is simple. The function f that maps an undirected instance of Force Path Cut to a
directed one simply takes each edge from the former and includes the two directed edges between
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the associated nodes (one in each direction). The values of p∗, s , and t remain the same. Formally,
f replaces E with

Ê =
⋃
{u,v }∈E

{(u,v ), (v,u)}. (32)

The graph Ĝ = (V , Ê) can be constructed in O (N +M ) time.
If we have a solution to Force Path Cut on the directed graph Ĝ, there is a similarly simple

mapping to a solution to undirected Force Path Cut: include the undirected version of each edge
in the solution. This takesO (M ) time. We show that this mapping provides a solution to the original
problem in the following lemma.

Lemma A.7. Let A be an undirected instance of Force Path Cut, and f (A) be its corresponding

directed instance. If Ê ′ is a solution to f (A), then the undirected solution

E ′ =
⋃

(u,v )∈Ê′

{{u,v}} (33)

solves A.

Proof. Suppose E ′ did not solveA; i.e., p∗ is not the shortest path from s to t inG ′ = (V ,E \E ′).
Then there is some other path, p̂, from s to t that is not longer than p∗. However, this path also
exists in Ĝ ′ = (V , Ê \ Ê ′): all edges from E were added in the creation of Ê, so if p̂ were not in
Ĝ ′, at least one edge from p̂ would have to be in Ê ′. The mapping д would include the undirected
version of this edge in E ′, which would cut p̂ in G as well. Thus, the existence of p̂ contradicts the
assumption that Ê ′ is a solution to f (A), proving the claim. �

Lemma A.8. Let E ′ be a solution to Force Path Cut on a directed graph. If (u,v ) ∈ E ′ and (v,u) ∈ E ′,
then either E ′ \ {(u,v )} or E ′ \ {(v,u)} is also a solution to Force Path Cut.

Proof. Let d (v1,v2) be the distance between v1 and v2 in the directed graph G ′ = (V ,E \ E ′).
(If a path does not exist between v1 and v2, then d (v1,v2) = ∞.)

First, consider the case where both u and v are on p∗. Assume without loss of generality that
u precedes v on the path. Then (v,u) did not need to be removed from the edge set. Since p∗ is
the shortest path from s to t , it is composed of shortest paths between all intermediate nodes on
the path; for example, the shortest path from s to v and the shortest path from v to t . Removing
(v,u) from E ′—leaving the edge in the graph when solving Force Path Cut—would not change the
status of p∗ as the shortest path from s to t : the shortest path from s to v would still include u, and
adding (v,u) back to the graph would only enable moving backward along the path. This means
that E ′ \ {(v,u)} is also a solution.

Now consider a case where one of u and v is part of p∗, but the other is not. Without loss of
generality, assumeu is onp∗ andv is not. Let �p∗ be the length ofp∗. Sincep∗ is the shortest path, we
know that d (s,v )+d (v, t ) > �p∗ . Since u is on p∗, we have d (s,u)+d (u, t ) = �p∗ . Suppose the claim
does not hold: that neither E ′ \ {(u,v )} nor E ′ \ {(v,u)} is a solution. This means that adding (u,v )
back into the edge set must create a path not longer than p∗, so we have d (s,u) +d (v, t ) + 1 ≤ �p∗ .
The same is true for (v,u), implying thatd (s,v )+d (u, t )+1 ≤ �p∗ . Adding the latter two inequalities,
we have

d (s,u) + d (u, t ) + d (s,v ) + d (v, t ) + 2 ≤ 2�p∗ ⇒ d (s,v ) + d (v, t ) ≤ �p∗ − 2, (34)

where we use the equation d (s,u)+d (u, t ) = �p∗ . This contradicts the first inequality, that the path
from s to t via v is longer than p∗.
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In the case where neitheru norv is onp∗, we replaced (s,u)+d (u, t ) = �p∗ withd (s,u)+d (u, t ) >
�p∗ , and the inequality in Equation (34) becomes strict. Thus, if both (u,v ) and (v,u) are in E ′, then
either E ′ \ {(u,v )} or E ′ \ {(v,u)} is also a solution to Force Path Cut. �

This lemma has an immediate consequence that is important for proving the reduction is linear.

Corollary A.9. Let E ′ be an optimal solution to Force Path Cut on a directed graph. If (u,v ) ∈ E ′,
then (v,u) � E ′.

Proof. From Lemma A.8, if E ′ contained both (u,v ) and (v,u), then removal of one of these
edges would still be a solution. Since the resulting solution would be smaller than E ′, this contra-
dicts the premise of the claim. �

In addition, we obtain the optimal solution to the undirected problem if we find the optimal
solution to the directed problem via the reduction.

Lemma A.10. Let A be an undirected instance of Force Path Cut and f (A) be the corresponding

directed instance. Then the optimal solution to f (A) is the optimal solution to A.

Proof. By Lemma A.7, we know that the optimal solution to f (A) solves A, so opt(A) ≤
opt( f (A)). Let E ′ be an optimal solution to A. Let Ê ′ be a solution to f (A) that includes both
directed edges for each undirected edge in E ′, i.e.,

Ê ′ =
⋃

{u,v }∈E′

{(u,v ), (v,u)}. (35)

Since E ′ is a solution to A, Ê ′ is a solution to f (A). (Otherwise a path p̂ in f (A) that is shorter
than p∗ would not be removed by E ′.) However, Ê ′ contains a pair of edges for each edge in E ′:
for any (u,v ) ∈ Ê ′, we have (v,u) ∈ Ê ′. By Lemma A.8, one edge from each pair can be removed.
This means that, for an optimal solution toA, we can find a solution to f (A) that is the same size,
which implies that opt( f (A)) ≤ opt(A). This means that opt(A) = opt( f (A)), and an optimal
solution for one problem can be applied to the other. �

Combining these intermediate results, we show that the reduction from undirected Force Path
Cut to the directed version is linear, and the directed version of the optimization problem is also
APX-hard.

Lemma A.11. Optimal Force Path Cut is APX-hard for directed graphs, including the case where

all weights and all costs are equal.

Proof. The function f simply takes edges from an undirected graph and builds a directed graph
with the same (directed) edges, which takes O (N +M ) time. The function д takes a set of directed
edges and converts it into a set of undirected edges, which takes O (M ) time. By Lemma A.7, д
maps to a true solution to the undirected Force Path Cut problem. This means that condition (1) is
satisfied.

Lemma A.10 guarantees that condition (2) is satisfied as well, with α = 1. Finally, let A be an
undirected instance of Force Path Cut. For any solution Ê ′ to f (A), we know that

1

2
|Ê ′ | ≤ |д(Ê ′) | ≤ |Ê ′ |. (36)

Thus, we have
���|д(Ê ′) | − opt(A)��� ≤

���|Ê
′ | − opt(A)��� =

���|Ê
′ | − opt(B)��� , (37)

so condition (3) is satisfied with β = 1.
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Since all three conditions are satisfied, f and д provide a linear reduction from Force Path Cut
on an undirected graph to the same problem on a directed graph. By Lemma A.1, Optimal Force
Path Cut for undirected graphs is APX-hard, so the reduction implies it is APX-hard for directed
graphs as well. �

Theorem 3.1 is a direct consequence of Lemma A.1 and Lemma A.11.

B PATHATTACK CONVERGENCE

We consider the case where the ellipsoid algorithm is used to optimize the relaxed version of the
integer program. At each iteration, we consider the center of an ellipsoid and determine whether

this point violates any constraints. Call this point x
f
cut ∈ [0, 1]M . In addition, let P be the current set

of explicit path constraints and Pf be the set of path constraints—both implicit and explicit—that

x
f
cut does not violate.

Given x
f
cut, we perform the randomized rounding routine used in Algorithm 2. With probability

at least 1/2, this procedure will yield a result that is within the guaranteed approximation margin
(i.e., the objective of the integer solution is within ln (4|P |) of the fractional solution) and satisfy-
ing all explicit constraints. Thus, with probability at least 1 − 1

|E | , it will yield such a solution in
O (log |E |) trials. More specifically, the probability of failing all of log2 |E | randomized rounding
trials is bounded by

pfail ≤
( 1

2

) log2 |E |
=

1

|E | .

Note that this holds for the full set Pf if |Pf | ≤ 1
4e
�ln (4 |P |)� , since the two set sizes result in the

same success bounds. If we attempt for O (log |E |) trials and never find a violated constraint, we
increment the number of Bernoulli random variables used in the randomized rounding procedure
and the approximation factor. With probability at least 1 − 1

|E | , this will yield a valid solution

in O (log |E |) trials if |Pf | ≤ e �ln (4 |P |)�+1. We continue until we find a path that needs to be cut
that is not (fractionally) cut by the solution of the relaxed problem or we obtain a solution that
satisfies all constraints, implicit and explicit. Algorithm 9 provides pseudocode for this procedure.
The algorithm will complete in polynomial time: There are at most N lnN iterations of the outer
loop, at most �log2 |E |� iterations of the second loop, inside of which:

• At most O ( |E |N logN ) Bernoulli random variables are instantiated and aggregated.
• An O ( |E |)-length vector is created.
• Edges are removed from a graph (at most O ( |E |) time).
• In the worst case, the second shortest path is found, which takes O (N 3) time.
• The constraints are checked (O (N ) time).

Each item takes polynomial time to complete, so the overall algorithm takes polynomial time.

C PATHATTACK FOR NODE REMOVAL

As discussed in Section 4.5, PATHATTACK can be used for node removal in addition to edge removal.
We refer to the associated optimization problem as Optimal Force Path Remove: given a weighted
graph G = (V ,E), w : E → R≥0, where each node has a cost of removal, c : V → R≥0, a path p∗

from s ∈ V to t ∈ V , and a budget b, is there a subset of nodesV ′ ⊂ V such that
∑

v ∈V ′ c (v ) ≤ b and
p∗ is the shortest path from s to t in G ′ = (V \V ′,E \ EV ′ ), where EV ′ ⊂ E is the set of edges with
at least one node in V ′? In this section, we prove that this problem is also APX-hard and provide
empirical results on the same datasets as shown in Section 6.
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ALGORITHM 9: Randomized Rounding Oracle: apply randomized rounding to a candidate fractional

solution, iteratively increasing the assumed number of implicit constraints if the procedure fails after

log2 |E | trials.

Input: Graph G = (V ,E), weights w , costs c, path p∗, fractional cut vector x
f
cut, path set P

Output: Path p that violates implicit constraints
s ← first node of p∗;
t ← last node of p∗;
apxFactor← �ln (4|P |)�;
x̂cut ← 0;

E ′ ← ∅;
not_cut← True;

while (apxFactor < N lnN ) and not_cut do

ctr← 0;

while (cx
f
cut > c


x̂cut (4 · apxFactor) or not_cut) and ctr < �log2 |E |� do

E ′ ← ∅;
for i ← 1 to apxFactor do

// randomly select edges based on x
f
cut

E1 ← {e ∈ E with probability x
f
cut[e]};

E ′ ← E ′ ∪ E1;

end

x̂cut ← indicator vector for E ′;
G ′ ← (V ,E \ E ′);
p ← shortest path (other than p∗) from s to t in G ′ with weights w ;

if
∑

(u,v )∈p x
f
cut[u,v] ≥ 1 then

// p does not violate x
f
cut

not_cut←True;

else

not_cut←False;

if p is longer than p∗ then

// found solution (if within approximation factor)

p ← ∅;
end

end

ctr← ctr + 1;

end

apxFactor← apxFactor + 1
end

return p

C.1 Computational Complexity

We propose the following reduction from Optimal Force Path Cut to Optimal Force Path Remove
for unweighted, undirected graphs:

• Take the input graph G = (V ,E) and create its line graph Ĝ = (V̂ , Ê).
• Create new nodes ŝ and t̂ and add these to V̂ .
• For all edges e ∈ E incident to s , create a new edge in Ê connecting ŝ to the corresponding

node ve ∈ V̂ .
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• For all edges e ∈ E incident to t , create a new edge in Ê connecting t̂ to the corresponding
node ve ∈ V̂ .
• Let p̂∗ be the path from ŝ to t̂ where all intermediate nodes are those that correspond to the

edges in p∗, in the same order.
• Solve Optimal Force Path Remove on Ĝ targeting p̂∗.

This procedure is the function f that maps an instance of Optimal Force Path Cut to an instance
of Optimal Force Path Remove. When we solve Optimal Force Path Remove, we obtain a set of
nodes V̂ ′ to remove. Since all nodes in Ĝ other than ŝ and t̂ correspond to edges in E—and ŝ and
t̂ cannot be in V̂ ′—the function д mapping a solution to Optimal Force Path Remove to a solution
to Optimal Force Path Cut is to make E ′ the set of edges in E corresponding to the nodes in V̂ ′.

We first prove that the reduction yields a solution to Optimal Force Path Cut in the following
lemma.

Lemma C.1. Let A be an unweighted, undirected instance of Optimal Force Path Cut and V̂ ′ be a

solution to f (A). Then E ′ = д(V̂ ′) is a solution to A.

Proof. Suppose E ′ were not a solution toA. This means that p∗ is not the shortest path from s
to t in G ′ = (V ,E \ E ′). Let p ′ be the competing path. Since p ′ remains a path from s to t , none of
its edges are in E ′, and therefore none of those edges’ corresponding nodes from Ĝ are in V̂ ′. This
means that all edges in p ′ have nodes in Ĝ. These nodes, however, form a path p̂ ′ from ŝ to t̂ , and
since the length of p ′ is less than or equal to the length of p∗, p̂ ′ is also no longer than p̂∗, which
contradicts the assumption that removing V̂ ′ makes p̂∗ the shortest path from ŝ to t̂ . �

In addition, the optimal solution to Force Path Cut is also the optimal solution to the derived
Force Path Remove instance.

Lemma C.2. LetA be an instance of Optimal Force Path Cut. If V̂ ′ is an optimal solution of f (A),
then E ′ = д(V̂ ′) is an optimal solution of A.

Proof. Suppose there were a better solution E1 ⊂ E, |E1 | < |E ′ |. Consider the corresponding
set of nodes V1 ⊂ V̂ . The augmented line graph of G1 = (V ,E \ E1) would be the same as Ĝ with
V1 (and all edges adjacent to nodes in V1) removed. Since p∗ is the shortest path from s to t in G1,
however, p̂∗ would be the shortest path from ŝ to t̂ in the augmented line graph. This means thatV1

is a solution to f (A). The fact that |E1 | < |E ′ |, however, implies that |V1 | < |V̂ ′ |, which contradicts
the assumption that V̂ ′ is an optimal solution, proving the claim. �

Using these results, we now prove APX-hardness in the undirected case.

Lemma C.3. Optimal Force Path Remove is APX-hard for undirected graphs, including the case

where all costs are equal.

Proof. To prove the claim, we show that the reduction described above satisfies the require-
ments of a linear reduction: f and д can be computed in polynomial time, the optimal solutions
differ by at most a constant factor, and the absolute difference of any solution from the optimal
solution is bounded by a constant factor. We consider each criterion in turn.

To create the line graph, a new graph is created with |E | nodes. For each node in the original
graph, edges are created in the new graph connecting two of the incident edges. Thus, for a node
in V with degree d , we have

(
d
2

)
edges in Ê, meaning that |Ê | is O ( |E |2). After creating the line

graph, we add two new nodes and their associated edges, which will be a total of O ( |V |). Overall,
the new graph has |E |+2 nodes andO ( |E |2+ |V |) edges. Finally, to identify p̂∗, we only need to keep
track of which nodes are associated with edges in p∗ in the original graph, which requires O ( |V |)
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additional time to convert the node labels. This means that f can be computed in polynomial time.
To compute д, we only need to maintain a mapping of the edges inG to the nodes in Ĝ, which will
take O ( |E |) time to populate. Converting the solution to Optimal Force Path Remove to a solution
to Optimal Force Path Cut will take O ( |V ′ |) = O ( |E |) lookups in the mapping. Thus, both f and д
can be computed in polynomial time.

By Lemma C.2, if V ′ is the optimal solution for f (A), then д(V ′) is the optimal solution for
A, which means condition (2) is satisfied with α = 1. In addition, since the solutions of the two
problems are the same size—each node removed to solve f (A) corresponds with an edge removed
to solve A—we have, for any proposed solution x to f (A),

|cost(x ) − opt( f (A)) | = |cost(д(x )) − opt(A) |, (38)

satisfying condition (3) with β = 1. Thus, all conditions of a linear reduction are satisfied. Since
Optimal Force Path Cut is APX-hard for unweighted, undirected graphs (Lemma A.1), this implies
that Optimal Force Path Remove is APX-hard as well. �

We can trivially reduce from the undirected case to the directed case by creating a directed
edge set that includes edges in both directions for each undirected edge in the original graph.
Solving Optimal Force Path Remove on the resulting directed graph yields the same solution as
solving the Optimal Force Path Remove on the original graph; thus, corresponding solutions in the
directed and undirected cases are always equally costly. The formal proof of the following lemma
is straightforward, and we omit it for brevity.

Lemma C.4. Optimal Force Path Remove is APX-hard for directed graphs, including the case where

all costs are equal.

The following theorem is a direct consequence of Lemmas C.3 and C.4.

Theorem C.5. Optimal Force Path Remove is APX-hard, including the case where all costs are

equal.

C.2 Experiments

We use the same experimental setup as in Section 6.3, in this case only considering the 200th
shortest path between the source and target. The baseline method is analogous to the edge removal
case: the lowest-cost node along the shortest path is removed until p∗ is the shortest path. In all
cases, the cost of edge removal is the edge weight, while the cost of node removal is degree. For
node removal, we only consider values of p∗ that have viable solutions (i.e., p∗ is the shortest path
from s to t in the subgraph induced on the nodes used by p∗).

Figure 10 shows results on unweighted graphs. We consider the equal-weighted case, with-
out random weights added, as this case highlights the greatest difference between edge cuts and
node removal. We did not consider cliques, since there is never a viable solution when p∗ is more
than one hop. Results for edge removal are shown for comparison. There are a few substantial
differences between relative performance using edge removal and node removal. For example,
PATHATTACK provides a much more significant cost reduction with node removal rather than edge
removal for Erdős–Rényi graphs. In the vast majority of these cases (99/100 for edge removal,
97/100 for node removal), randomized PATHATTACK finds the optimal solution. This suggests that
targeting the low-degree nodes—as the baseline does for node removal—is not an effective strat-
egy in this context; i.e., the increased cost of removing higher-degree nodes pays off by removing
more competing paths. Another major difference is that the baseline outperforms PATHATTACK for
lattices with equal weights. In this case, while PATHATTACK finds the optimal solution with edge
removal in 94% of cases, it is only optimal 20% of the time with node removal. Since degrees are
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Fig. 10. Results on unweighted networks when PATHATTACK removes nodes rather than edges. Results are

shown where all edges have equal weight and removal cost, in terms of attack cost (left column) and running

time (right column). Lower is better for both metrics. Bar heights are means across these trials and error bars

are standard errors. Results are shown for edge removal (top row) as a comparison to the results for node

removal (bottom row). For (D)ER graphs, PATHATTACK yields much more substantial improvement with node

removal than edge removal, while for lattices PATHATTACK actually underperforms the baseline. This demon-

strates the variation in effectiveness of the baseline (greedily removing low-degree nodes) over differences

in topology.

equal, GreedyCost simply removes the first node that deviates from p∗, which works well for un-
weighted lattices, while the analogous strategy for edge removal is suboptimal. We see a similar
phenomenon with the autonomous system graph: the baseline method of removing low-degree
nodes yields a near-optimal solution, suggesting that focusing on disrupting the intermediate low-
degree nodes between the endpoints and the hubs is a cost-effective strategy. While attacking
high-degree nodes is useful for disconnecting networks with skewed degree distributions [2], the
degree-based cost and focus on making a particular path shortest make a different strategy ideal
here.

Figure 11 illustrates results on real weighted graphs. Unlike the autonomous system graph, here
the power grid and road networks outperform the baseline more significantly using node removal.
Here, the diversity of edge weights among the real graphs—and their contribution to path length—
makes greedily selecting low-cost edges a more effective heuristic than selecting low-degree nodes.

D DATASET FEATURES

Our experiments were run on several synthetic and real networks across different edge-weight
distributions. All networks are undirected except DER, WIKI, and LBL. We described the edge-
weight distributions in Section 6 of the article. Table 1 provides summary statistics of the syn-
thetic networks. Modularity is computed after performing community detection with the Louvain
method [7]. Betweenness centrality is estimated based on the shortest paths between 100 randomly
selected source-destination pairs.
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Fig. 11. Results on weighted networks when PATHATTACK removes nodes rather than edges. Results are

shown in terms of attack cost (left column) and running time (right column). Lower is better for both metrics.

Bar heights are means across these trials and error bars are standard errors. Results are shown for edge re-

moval (top row) as a comparison to the results for node removal (bottom row). Unlike the unweighted graphs,

PATHATTACK outperforms the baseline by a higher margin with node removal than with edge removal.

We ran experiments on both weighted and unweighted real networks. In cases of unweighted
networks, we added edge weights from the same distributions as the synthetic networks. Below is
a brief description of each network used. Table 2 summarizes the properties of each network.

The unweighted networks are:

• Wikispeedia graph (WIKI): The network consists of web pages (nodes) and connections
(edges) created from the user-generated paths in the Wikispeedia game [53]. Available at
https://snap.stanford.edu/data/wikispeedia.html.
• Oregon autonomous system network (AS): Nodes represent autonomous systems of routers

and edges denote communication between the systems [34]. The dataset was collected at the
University of Oregon on March 31, 2001. Available at https://snap.stanford.edu/data/Oregon-
1.html.
• Pennsylvania road network (PA-ROAD): Nodes are intersections in Pennsylvania, connected

by edges representing roads [35]. Available at https://snap.stanford.edu/data/roadNet-PA.
html.

The weighted networks are:

• Central Chilean Power Grid (GRID): Nodes represent power plants, substations, taps,
and junctions in the Chilean power grid. Edges represent transmission lines, with
distances in kilometers [32]. The capacity of each line in kilovolts is also provided.
Available at https://figshare.com/collections/An_in-depth_network_structural_data_and_
hourly_activity_on_the_Central_Chilean_power_grid/4053374.
• Lawrence Berkeley National Laboratory network data (LBL): A graph of computer net-

work traffic, which includes counts of the number of connections between machines over
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Table 1. Properties of the Synthetic Networks Used in Our Experiments

Network Nodes Edges 〈k〉 σk κ τ �
ER 16, 000 159, 840 19.98 4.462 0.001 0.001 1, 318

±0.0 ±374.025 ±0.047 ±0.017 ±0.0 ±0.0 ±42.488
DER 16, 000 319, 700 39.963 6.32 0.001 0.001 10, 667.2

±0.0 ±575.92 ±0.072 ±0.031 ±0.0 ±0.0 ±137.267
BA 16, 000 159, 900 19.988 24.476 0.008 0.007 17, 089.1

±0.0 ±0.0 ±0.0 ±0.289 ±0.0 ±0.0 ±436.128
WS 16, 000 160, 000 20 0.627 0.67 0.668 677, 850.8

±0.0 ±0.0 ±0.0 ±0.005 ±0.001 ±0.001 ±820.131
KR 16, 345.1 159, 645 19.534 16.063 0.003 0.004 7, 605.6

±17.038 ±80.722 ±0.015 ±1.195 ±0.0 ±0.001 ±1, 975.135
LAT 81, 225 161, 880 3.986 0.118 0 0 0

±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0
COMP 565 159, 330 564 0.0 1.0 1.0 29,900,930

±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

Network d BC Q 〈�〉 σ�

ER 5 1e–4 0.182 4.556 0.561
±0.0 ±1.5e−7 ±0.001 ±0.057 ±0.029

DER 5.0 1e–4 0.053 4.605 0.53
±0.0 ±1.5e−7 ±0.036 ±0.038 ±0.026

BA 4.3 1e–4 0.198 4.19 0.502
±0.458 ±4e−7 ±0.001 ±0.054 ±0.038

WS 9.6 3e–4 0.944 7.445 1.152
±0.49 ±2e−6 ±0.0 ±0.084 ±0.098

KR 7 1e–4 0.193 4.533 0.625
±0.632 ±0.0 ±0.006 ±0.046 ±0.022

LAT 568 0.0023 0.951 182.41 85.702
±0.0 ±1e−6 ±0.0 ±0.0 ±0.0

COMP 1 0 0 1 0
±0.0 ±0 ±0.0 ±0.0 ±0.0

For each random graph model, we generate 100 networks. Note that the number of edges across the different
networks is ≈ 160K. The table shows the average degree (〈k〉), standard deviation of the degree (σk ), average
clustering coefficient (κ ), transitivity (τ ), number of triangles (�), diameter (d ), average betweenness
centrality (BC), modularity (Q ), average shortest path distance(〈�〉) and standard deviation of shortest path
distance (σ� ). The ± values show the standard deviation across 100 runs of each random graph model.

time. Counts are inverted for use as distances. Available at https://www.icir.org/enterprise-
tracing/download.html.
• Northeast US Road Network (NEUS): Nodes are intersections in the northeastern part of the

United States, interconnected by roads (edges), with weights corresponding to distance in
kilometers. Available at https://www.diag.uniroma1.it/~challenge9/download.shtml.
• DBLP coauthorship graph (DBLP): This is a coauthorship network [5]. We invert the number

of coauthored papers to create a distance (rather than similarity) between the associated
authors. Available at https://www.cs.cornell.edu/~arb/data/coauth-DBLP/.
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Table 2. Properties of the Real Networks Used in Our Experiments

Network Nodes Edges 〈k〉 σk κ τ �
GRID 347 444 2.559 1.967 0.086 0.087 40
LBL 3, 150 9, 459 6.005 25.654 0.100 0.005 1,821
WIKI 4, 589 106, 644 46.478 69.892 0.274 0.102 550, 544
AS 10, 670 22, 002 4.124 31.986 0.297 0.009 17, 144
PA-ROAD 1, 087, 562 1, 541, 514 2.834 1.016 0.046 0.059 67, 112
NEUS 1, 524, 453 1, 934, 010 2.537 0.950 0.022 0.030 37, 012
DBLP 1, 659, 954 8, 119, 276 9.782 22.359 0.643 0.165 26, 781, 590

Network d BC Q 〈�〉 σ�

GRID 23 0.020 0.832 9.09 3.203
LBL 11 8e–4 0.729 4.68 0.936
WIKI 5 3e–4 0.371 3.51 0.499
AS 10 2e–4 0.627 4.59 0.918
PA-ROAD 794 2e–4 0.989 293.24 155.280
NEUS 2098 4e–4 0.992 758.04 404.963
DBLP 22 2.25e–6 0.754 6.73 1.156

For each network, we are listing the average degree (〈k〉), standard deviation of the degree (σk ), average
clustering coefficient (κ ), transitivity (τ ), number of triangles (�), diameter (d ), betweenness centrality (BC),
modularity (Q ), average shortest path distance(〈�〉) and standard deviation of shortest path distance (σ� ).
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