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Abstract—Identifying anomalies and contamination in datasets
is important in a wide variety of settings. In this paper, we
describe a new technique for estimating contamination in large,
discrete valued datasets. Our approach considers the normal
condition of the data to be specified by a model consisting of
a set of distributions. Our key contribution is in our approach
to contamination estimation. Specifically, we develop a technique
that identifies the minimum number of data points that must be
discarded (i.e., the level of contamination) from an empirical
data set in order to match the model to within a specified
goodness-of-fit, controlled by a p-value. Appealing to results from
large deviations theory, we show a lower bound on the level of
contamination is obtained by solving a series of convex programs.
Theoretical results guarantee the bound converges at a rate of
O(

√
log(p)/p), where p is the size of the empirical data set.

Index terms: contamination estimation, anomaly detection, entropy
minimization, discrete goodness-of-fit testing.

I. INTRODUCTION

Anomalies in datasets are typically associated with un-
expected or unwanted characteristics such as contamination,
noise or outliers that deviate significantly from expectations.
The ability to detect anomalies and accurately estimate con-
tamination in datasets is important in a wide variety of
domains including healthcare, astronomy, environmental and
materials sciences. The context that motivates our work is
detecting anomalies and estimating contamination in datasets
collected from communication and computer systems. Specific
applications of anomaly detection in these datasets include
network management and Internet security broadly defined.
Communication and Internet measurement datasets have sev-
eral distinguishing characteristics including the potential for
extreme scale and high dimensionality.

The standard framework for anomaly detection is based on
establishing a baseline for normal (e.g., in a distributional
sense) and then setting a threshold which if exceeded identifies
an anomaly. The goal in establishing norms and thresholds
is to identify anomalies with low false alarm rates. There is
an extensive literature on methods for anomaly detection (see
related work in Section III).

In this paper we describe a new method for anomaly detec-
tion which is based on estimating the level of contamination in
a dataset. An anomaly is declared if a dataset has an elevated
level of contaminate. We consider the contamination-free (i.e.,
normal) condition of a dataset to be specified by a model
comprised of a set of distributions. We then compare the model
to the distributional profile of a target dataset collected over
a specified period. A standard method for comparing datasets

in this way is goodness of fit (GoF) testing [1]. To the best of
our knowledge, this paper is the first to address the problem of
contamination estimation using GoF testing based on entropy
minimization, as we define in Section II-B.

The approach we develop is based on answering the fol-
lowing question. Given a model consisting of a family of
distributions, a specified p-value, and an empirical dataset,
what is the minimum number of data points that must be
discarded so that the empirical distribution of the data matches
a member model distribution (in terms of GoF for a specified
p-value)? This is akin to finding the largest subset of the
original dataset which has an empirical distribution close to
the model. We show that this question can be efficiently
answered by solving a series of convex optimizations. Solving
the optimizations results in a lower bound on the minimum
number of data points that are attributed to a contaminate. In
the simplest case, each convex optimization is an inequality
constrained entropy minimization problem (whose dual is a
constrained geometric program) which can be solved in real
time and at scale for many applications. More generally, the
approach can be applied to any setting in which the model
consists of a convex set of distributions. Two specific instances
which we discuss are 1) models defined by any number of
distributions with arbitrary mixture proportions, and 2) models
defined by the set distributions with small Kullback-Leibler
(KL) divergence to a specified distribution, which arises when
the model itself is generated from a finite amount of data.
Lastly, we show the lower bound output by the optimization
converges to an upper bound known as the separation distance
at a rate of O(

√
log(p)/p), where p is the number of data

points.

II. QUANTIFYING CONTAMINATION

A. Notation

Let P ∈ Rn and Q ∈ Rn denote probability mass functions
over n categories, with elements Pi, i = 1, . . . , n and Qi,
i = 1, . . . , n. Throughout, P denotes the distribution under
test, Q denotes a member distribution of the model, Q0

denotes the ‘true’ unknown model distribution, and Qj indexes
multiple distributions. The empirical distribution of a sequence
of random variables X = X1, . . . , Xp ∈ X p is the relative pro-
portion of occurrences of each element of X in X . Specifically,
let X =: {x1, x2, . . . , xn} and define pi =

∑p
j=1 1{Xj=xi}

for i = 1, . . . , n. Then P̂ (X) = 1
p {p1, p2, . . . , pn} .

PQ(·) denotes probability measure with respect to distribution



Q. For simplicity of notation, we write PQ({P̂ 1, P̂ 2}) as
short hand for PQ

({
X ∈ X p : P̂ (X) ∈ {P̂ 1, P̂ 2}

})
. The

Kullback-Leibler divergence between two distributions is de-
fined in the usual manner,

D(P ||Q) :=
∑
i

Pi log

(
Pi
Qi

)
.

D(P ||Q) is a jointly convex function in P and Q. The
minimum entropy set, {P : D(P ||Q) ≤ ε}, is a convex set (for
a fixed Q, ε). Lastly, let Sn denote the probability simplex:

Sn :=

{
P ∈ Rn :

∑
i

Pi = 1, Pi ≥ 0 i = 1, . . . , n

}
.

B. Quantifying Contamination

Consider a set of model distributions Q whose elements
are supported over a finite number of categories X with
|X | = n. For example, Q could be set of minimum entropy
distributions, or a mixture distribution, Q =

∑`
j=1 πjQ

j ,
where π1, . . . , π` are unknown (Q is the set of all such mixture
distributions). Let X ∈ X p denote a collection of samples.
An unknown subset of the samples consists of i.i.d. draws
from an unknown distribution Q ∈ Q. The remaining samples,
C ⊂ [p], are generated by some other means, and correspond
to contaminated samples. This paper is concerned with lower
bounding the size of the contaminating set C given the set
of model distributions Q, a specified significance level (a p-
value), and the observed samples X1, . . . , Xp.

Intuitively, if the empirical distribution of a sequence of
random variables is close to the model distribution in terms
of GoF, we conclude the sequence is not contaminated. To
quantify this intuition, we define a set of typical empirical
distributions based on statistical significance; we note this
definition is distinct from the usual definitions of strongly and
weakly typical, and making this connection is a contribution
herein.

Definition 1. Typical. Let P̂ 1, P̂ 2, . . . be an ordering on all
empirical distributions (of p samples and n categories) such
that PQ(P̂ 1) ≤ PQ(P̂ 2) ≤ . . . . A sequence of random
variables X with P̂ (X) = P̂ ` is typical at significance level
ε with respect to Q iff

sup
Q∈Q

PQ
({
P̂ 1, P̂ 2, . . . , P̂ `−1, P̂ `

})
≥ ε (1)

for any such ordering1.

The definition implies a sequence of random variables X
is typical if the probability of the empirical distribution of
X or any less likely empirical distribution is more than a
specified significance level. Note ε is interpreted as a p-value;
as ε approaches zero, all sequences become typical (requiring
stronger evidence to reject the null hypothesis). As ε increases,
fewer sequences are typical.

1Note the ordering is an implicit function of Q; we suppress this for
simplicity of notation.

Definition 2. Contaminated. We say X is contaminated iff
X is not typical (with respect to Q and with significance ε).
Likewise, an empirical distribution P̂ (X) is contaminated iff
X is not typical.

In this paper we study the following question. Let X =
X1, . . . , Xp be a dataset, and let XĈ = {Xi : i ∈ Ĉ } be
any subset of of the original dataset. What is the smallest set
Ĉ ⊂ [p] such that X[p]\Ĉ is not contaminated? Specifically, let

c∗ = inf
{
|Ĉ| : X[p]\Ĉ is typical for (Q, ε)

}
.

How and under what conditions can one compute c∗ effi-
ciently? Our main focus and insight will be on the continuous
approximation to c∗/p, denoted α∗:

α∗ = inf {α ∈ [0, 1] : ∃P ∈ P(X,α) typical for (Q, ε)}

where P(X,α) is the set of all distributions that can be created
by discarding a fraction α of the mass of P̂ (X) (see Sec. II-D):

P(X,α) =

{
P ∈ Sn : Pi ≤

P̂i(X)

1− α
i = 1, . . . , n

}
. (2)

Throughout, α is a key parameter that represents the fraction
of the dataset attributed to contamination; α∗ represents the
smallest α such that there exists a subset of the original data of
size p(1−α) that is not contaminated. If α∗ = 0, the original
dataset is not contaminated; if α∗ = 1, the entire dataset must
be attributed to contamination.

C. Separation Distance

We assume Xi
i.i.d.∼ Q0 for all i 6∈ C. For Xi, i ∈ C,

no assumption is made. This agnostic approach has inherent
limitations. In the extreme case the distribution of the contam-
inated data could exactly follow that of the model. Here, the
distribution of the full dataset should closely match the model,
and be indistinguishable from the setting where C is empty.
No contamination should be reported to within the significance
level (in m realizations of Xp, we expect c∗ 6= 0 fewer than
mε times).

A more interesting scenario is when the empirical distribu-
tion of the full dataset converges to a distinct distribution i.e.,
P̂ (Xp)→ P 6= Q0. In the case that Q =

{
Q0
}

, a consistent
estimator will report non-zero contamination for large p. P can
be written as a mixture distribution, and we are interested in
reporting the smallest κ such that (1−κ)Q0+κF = P for any
distribution F . F represents the contaminating distribution,
and κ the proportion of the samples which are drawn from
F . This minimum value of κ is known as the separation
distance [2] between P and Q0, written succinctly as

κ(P ||Q0) = max
i∈[n]

(
1− Pi

Q0
i

)
.

In this way, the separation distance between the empirical dis-
tribution of the data and model distribution plays an important
role in the behavior of c∗ and α∗ as the sample size grows.
We show as a corollary to later results that α∗ is both upper
bounded by and converges to κ(P̂ (X)||Q0) as p grows (see
Proposition 1 and Theorem 6).



D. Convex Relaxations

With the exception of problems involving data over only two
categories (n = 2), directly checking if a sample is contami-
nated is computationally prohibitive, even in the setting where
the model consists of a single distribution (when Q = {Q0}).
Alternatively, using large deviations results, bounds can be
derived. The bound presented below can confirm if a partic-
ular dataset is contaminated. The theorem involves the KL
divergence between the empirical distribution and a member
of Q. In the case where Q = {Q0}, the bound provides a
simple way to check if a sample is contaminated at a particular
significance level ε; in the more general case, if Q is a convex
set, numerical optimization techniques can efficiently check
the condition.

Theorem 1. (Outer Bound). If

inf
Q∈Q

D(P̂ (X)||Q) ≥ 1

p
log

(
1

ε

)
+

2n

p
log(p+ 1) (3)

then X is contaminated at significance level ε.

Proof. See Appendix A.

Theorem 1 is an outer bound; any empirical distribution
with KL distance greater than the stated quantity (from all
elements in Q) is contaminated. Theorem 1 can be used to
bound the size of the smallest set C ⊂ [p] such that X[p]\C is
not contaminated. This is simplified if Q consists of a single
model distribution; we first discuss this scenario. In principle,
given a dataset X ∈ X p and a model distribution Q0, one
could first check if X is contaminated by evaluating (3). If (3)
holds, X is contaminated, and an immediate question follows
– how many and which data points must be excluded so that
(3) no longer holds? A exhaustive approach to answer this
question would be the following. For each xi ∈ X , discard a
single data point that takes the value xi, and recalculate the
empirical distribution with the data point removed. Of the n
new empirical distributions, check if the one with minimum
KL divergence to the model distribution still satisfies (3).

If (3) still holds for all possible empirical distributions
with one data point removed, check all distinct empirical
distributions that can be created by discarding 2 data points
(roughly n2 possibilities, provided each xi appears at least
twice in the data). Continuing in this manner, one would check
each of the ∼ nm possible empirical distributions that can be
created by discarding m data points. When (3) is first violated,
m lower bounds the minimum number of data points that must
be excluded to match the model. We can interpret this as a
series of integer programs. For m = 0, . . . , p define D∗m as
the solution to

minimize
m1,m2,...,mn∈Nn

n∑
i=1

pi −mi

p−m
log

(
pi−mi
p−m

Q0
i

)
subject to

∑
i

mi = m

mi ≤ pi i = 1, . . . , n

(4)

where pi is the number of times xi appears in the original
dataset X . The optimization variables, mi, represent the
number of samples to discard corresponding to a particular
xi. Note that the objective is the KL divergence between the
new empirical distribution (with m samples removed) and the
known distribution Q0. The value of D∗m can be checked in
Theorem 1, providing conditions under which one can find a
set |C| = m such that X[p]\C is not contaminated. This gives
a bound on c∗. Specifically,

c∗ ≥ max

{
m : D∗m ≥

1

p−m
log

(
1

ε

)
+

2n

p−m
log(p−m+ 1)

}
.

Note that the condition in Theorem 1 will always be met for
some m; in particular, for m = p, by convention D∗0 = 0,
implying that the empty set, X{}, is not contaminated.

The optimization in (4) is an integer program over a subset
of Nn. To efficiently solve the optimization, we can translate
the integer valued variables to their continuous counterparts;
specifically, let P̂i = pi/p, be the original empirical distribu-
tion, and α = m/p represent the fraction the total samples
discarded. Making these substitutions results in a convex
entropy minimization problem:

minimize
P∈Sn

∑
i

Pi log

(
Pi
Q0
i

)
subject to Pi ≤

P̂i
1− α

i = 1, . . . , n

(5)

where α ∈ [0, 1] represents the fraction of samples removed.
More generally, Q is a set of distributions. The same

continuous approximation results in a joint optimization over
the model space Q and the space of empirical distributions,
P(X,α) defined in (2). Formally, let D∗α be given as

D∗α = min
P∈P(X,α),Q∈Q

∑
i

Pi log

(
Pi
Qi

)
. (6)

If Q is a convex set, the above optimization can be efficiently
solved in many settings (see Sec. II-E).

To answer our original question and bound α∗, one can
conduct a line search over α ∈ [0, 1], repeatedly solving
the above optimization, and checking the output value of
D∗α against Theorem 1. This is captured in the following
proposition.

Proposition 1. Let

αL = max

{
α : D∗α ≥

1

p(1− α)
log

(
1

ε

)
(7)

+
2n

p(1− α)
log (p(1− α) + 1)

}
then αL ≤ α∗.

Proof. The proof follows directly from Theorem 1. For any
α such that the condition on D∗α in (7) holds, by Theorem
1, any distribution in P(X,α) is contaminated. We note that



Fig. 1. Geometric interpretation of Proposition 1 and the optimization in
(5) with Q =

{
Q0
}

. The width of the hypercube around P̂ is α. As α is
increased, the hypercube eventually intersects the ‘outer bound’ set, which
represents the set of distributions closest to Q0 in KL divergence; the sets
intersect when α = αL. Note that the ‘outer’ bound set also increases in size
as α increases.

αL always exists by monotone properties of D∗α and the right
hand side of the conditional in (7). See Appendix B, Theorem
6 for details.

Fig. 1 shows a geometric interpretation of Proposition 1 and
the optimization in (5). See the caption for details.

The lower bound obtained by solving the series of optimiza-
tion problems converges to the separation distance, captured
by the following theorem.

Theorem 2. Let Q = {Q0}. Fix P̂ (X). Then

κ(P̂ ||Q0)− αL = O

(√
log p

p

)
.

Proof. See Appendix B.

Theorem 2 is stated for a fixed P̂ (X), although one would
in general assume P̂ (X) to be an implicit function of p. The
reason for fixing P̂ (X) is both generality and simplicity. The
assumption decouples randomness from the convergence rate
of the upper bound and the lower bound produced the opti-
mization; without this assumption, the upper and lower bounds
would be random variables, and necessitate a probabilistic
statement. We also note that a precise limit statement can be
readily extracted from the proof.

E. Discussion

In practice, it is often the case that the precise model distri-
bution is not known; instead, it may be known that the model
distribution comes from some family of distributions. This
arises in anomaly detection when normal events are known to
correspond to unknown proportions of samples from a finite
set of distributions. This is the case of the mixture model
i.e., Q is the set of all distributions that can be represented

as Q =
∑
πjQ

j for any mixture proportions πj . As the set
of mixture distributions with unknown mixture components
is a convex set, we can directly address this setting using the
developments of Sec. II-D. Jointly optimizing over the mixture
weights and the mixture distribution, the optimization takes the
form

minimize
P∈Pn, π∈Sk

∑
i

Pi log

(
Pi∑k

j=1 πjQ
j
i

)
. (8)

We note that the above optimization can be solved at scale in
real time for many applications; see discussions of numerical
experiments below for details.

For many applications, model distributions are generated
using a finite amount of data from known good sources (i.e.,
sources that are known to have no contamination). Let Q̂ be an
empirical distribution generated from p′ samples of an i.i.d.
population, and consider the set

Q′ =
{
Q : Q̂ is typical for ({Q}, ε)

}
.

Here, Q is the set of all distributions that have Q̂ as a typical
empirical distribution. As before, determining membership in
Q is intractable for large p′ and more than two categories. Let

Q̄ =

{
Q : D(Q̂||Q) ≤ 1

p′
log

(
1

ε

)
+

2n

p′
log(p′ + 1)

}
.

Q̄ satisfies two important properties. First,Q ⊆ Q̄ by Theorem
1 and second, Q̄ is a convex set.

Solving the optimization in (6) with Q = Q̄ provides a
powerful result which we state in the following proposition.
Proposition 2. Consider two empirical distributions P̂ and Q̂.
Let Q = Q̄, defined above, and let D∗0 be the solution to the
optimization in (6) with α = 0. If

D∗0 ≥
1

p
log

(
1

ε

)
+

2n

p
log (p+ 1) ,

there is no Q that simultaneously satisfies 1) Q̂ is typical with
respect to Q and 2) P̂ is typical with respect to Q.

Satisfying proposition 2 implies that observing a Q̂ and a
P̂ generated by the same underlying distribution by chance
can occur at most a fraction ε of the time; in this sense, P̂
must be contaminated. With a single parameter search over
α ∈ [0, 1], the lower bound applies: α∗ ≥ αL. We note that
the formulation does not require the empirical model and the
distribution under test to have joint support.

Numerical experiments were conducted to highlight the
utility of Proposition 1; results are shown in Fig. 2. In contrast
to the deterministic experiments in Fig. 2, experiments with
random samples from various model and test distributions as
input were run, showing similar convergence behavior. An
experiment with with Q being a set of 10 mixture distributions
with n = 50 was also conducted. The line search over α was
completed using a bisecting search to an accuracy of 2−28

(the optimization was solved 27 times for each experiment).
Averaged over 50 trials, the total time to compute αL was 0.4
seconds. Experiments were implemented using CVXOPT [3]
and results visualized with matplotlib [4].
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Fig. 2. Numerical example. n = 11, ε = 0.05, Q = {Q0}, with Q0

a uniform distribution over 11 categories. Solid lines show αL divided by
κ(P̂ ||Q0) for mixture distributions P̂dip = (1− π) Q0 + πU10, where U10
is a uniform distribution over 10 of the 11 categories. Dashed lines show αL

divided by κ(P̂ ||Q0) for P̂spike = (1−π)Q0+πδ, where δ is a point mass.

III. RELATED WORK

Related work can be broadly classified into traditional work
in goodness of fit (GoF) testing, and more recent work in
anomaly detection. GoF testing has an extensive literature.
When the data are binary valued, and the model distribution
Bernoulli, quantifying contamination using GoF tests can be
addressed by evaluating binomial probabilities (a technique
known as Fisher’s Exact method [5]). When the data take
on more than two values, exact solutions for the level of
contamination become intractable.

A customary approach to GoF testing for categorical data
is Pearson’s χ2 test [6]. This approach to GoF testing can
be quite powerful, but suffers from limitations. χ2 tests are
approximations, and are known to be invalid under certain
conditions. In particular, the test is invalid when pi = 0 for one
or more categories. Nonetheless, employing the χ2 test, one
can deduce another optimization (much as we do in Sec. II-D)
to answer the aforementioned question; we note the resulting
optimization is a separable quadratic program with linear
equality constraints which has an analytic solution [7], and
would be an interesting starting point for future work. Since
Pearson’s χ2 test hinges on a normal approximation, this ap-
proach would not result in strict contamination bounds. More
specific to the contamination estimation problem presented
here, recent work includes decontamination with multiclass
label noise [8], [9], which focuses on recovering proportions
of a set of mixture distributions present in dataset.

There is an extensive literature on the related topics of
anomaly detection and outlier detection including work em-
ploying entropy based techniques, in particular [10] and [11];

we note the formulations here are distinct in that the level
of contamination is not estimated. Lastly, we briefly discuss
related work in anomaly detection the areas of computer
networks, systems and security as this is the motivation for our
developments. Early work on identifying anomalous or unex-
pected behaviors such faults (e.g., due to outages or failures)
or spikes (e.g., associated with DoS attacks or flash crowds) in
computer network traffic was based on the application of graph
models, time series and multi-resolution methods e.g., [12]–
[15], and Principle Components Analysis (PCA) [16]–[18].
There are significant difficulties in tuning these methods to
provide low false alarm rates in practice [19], necessitating
methods based on statistical significance, as presented here.
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APPENDIX A

Proof of Theorem 1 requires two ingredients, both relying on results from large deviations theory. The first ingredient is
Sanov’s Theorem, which we state below.

Theorem 3. (Sanov’s Theorem) [20] (Theorem 11.4.1). Let S be a set of empirical distributions (with p samples over n
categories). Then

PQ(S) ≤ (p+ 1)n exp

(
−pmin

P̂∈S
D(P̂ ||Q)

)
. (9)

The second ingredient is also readily derived from results in large deviations theory.

Theorem 4. Let S be a set of empirical distributions such that PQ(P̂ `) ≥ PQ(P̂ ) for all P̂ ∈ S. Then,

min
P̂∈S

D(P̂ ||Q) ≥ D(P̂ `||Q)− n

p
log(p+ 1).

Proof. The following inequalities hold [20] (Theorem 11.1.4):

1

(p+ 1)n
exp

(
−pD(P̂ ||Q)

)
≤ PQ(P̂ ) ≤ exp

(
−pD(P̂ ||Q)

)
. (10)

Thus, for any PQ(P̂m) ≤ PQ(P̂ `),

1

(p+ 1)n
exp

(
−pD(P̂m||Q)

)
≤ exp

(
−pD(P̂ `||Q)

)
which implies the result, completing the proof of Theorem 4.

Combining Theorems 3 and 4, we have

PQ({P̂ 1, P̂ 2, . . . , P̂ `}) ≤ (p+ 1)2n exp
(
−pD(P̂ `||Q)

)
provided PQ(P̂ 1) ≤ PQ(P̂ 2) ≤ · · · ≤ PQ(P̂ `). This provides a simple way to confirm if a sample is contaminated at a
particular significance level ε. In particular, assume P̂ (X) = P̂ `. If

(p+ 1)2n exp
(
−pD(P̂ (X)||Q)

)
≤ ε

or equivalently

D(P̂ (X)||Q) ≥ 1

p
log

(
1

ε

)
+

2n

p
log(p+ 1) (11)

then X is not typical; X satisfies

PQ({P̂ 1, P̂ 2, . . . , P̂ `}) ≤ ε

and is contaminated with significance ε. If (11) holds for all Q ∈ Q, in other words, if

inf
Q∈Q

D(P̂ (X)||Q) ≥ 1

p
log

(
1

ε

)
+

2n

p
log(p+ 1)

we conclude then X is not typical with respect to (Q, ε), implying the result.

APPENDIX B

Proof of Theorem 2. The proof requires three main steps. The first step is to show that when α is sufficiently close to
κ(P̂ ||Q0), the solution to (6) can be written in closed form. The second step is to show a number of properties regarding the
asymptotic behavior of αL as p grows; specifically, αL is monotone increasing in p, and converges to the separation distance;
these properties imply that for large p, the closed form solution is valid. Lastly, we can bound the difference between κ(P̂ ||Q0)
and αL using the closed form solution.

Step 1: For α close to the separation distance (equivalently, for large p, as we show next in Theorem 6), the optimization
has a closed form. This is captured in the following Theorem. Note the theorem assumes there is a unique largest P̂`

Q`
; in the

degenerate case when this is not true, the theorem can be restated introducing at most a factor of n, which does not affect the
final result.



Theorem 5. Let P̂i
Qi

be ordered such that P̂`
Q`

< P̂k
Qk
≤ · · · ≤ P̂n

Qn
. For α ∈ [1− P̂` − P̂k

Qk
(1−Q`) , κ(P̂ ||Q)]

P ∗i =


Qi

(
1− P̂`

1−α

)
1−Q` i 6= `

P̂`
1−α i = `

(12)

is the unique solution to (6).

Proof. The result can be shown by verifying the conditions KKT conditions with

λ∗i =


0 i 6= `

log

Q`

(
1− P̂`

1−α

)
(1−Q`)

P̂`
1−α

 i = `
(13)

and

ν∗ = log

 1−Q`
1− P̂`

1−α

− 1

where the Lagrangian [21] is given as

L(P, λ, ν) =
∑
i

Pi log
Pi
Qi

+
∑
i

λi

(
Pi −

P̂i
1− α

)
+ ν

(∑
i

Pi − 1

)
.

These primal and dual optimal points are derived using methods similar to [21] (p. 228, 248); in what follows, we simply
verify the KKT conditions which suffice to complete the proof. First, we confirm that the solution is a stationary point:

∂L(P, λ, ν)

∂Pi

∣∣∣∣
P∗,λ∗,ν∗

= log
Pi
Qi

+ 1 + λi + ν

∣∣∣∣
P∗,λ∗,ν∗

= 0

which holds for all i. The complementary slackness condition is readily verified:

λ∗i

(
P ∗i −

P̂i
1− α

)
= 0, i = 1, . . . , n.

It remains to show conditions under which the solution is primal and dual feasible. First, λ∗` ≥ 0 provided

Q`

(
1− P̂`

1−α

)
(1−Q`) P̂`

1−α

≥ 1.

After arranging terms, the above holds when α ≤ 1 − P̂`
Q`

= κ(P̂ ||Q). The primal equality constraint,
∑
i P
∗
i = 1, is readily

verified. Lastly, we check the primal inequality constraints. P ∗` is trivially feasible. For i 6= `, we require

P ∗i =
Qi

(
1− P̂`

1−α

)
1−Q`

≤ P̂i
1− α

which holds when

α ≥ 1− P̂` −
P̂i
Qi

(1−Q`) .

Since P̂i
Qi
≥ P̂k

Qk
for all i 6= `, the solution is feasible if

α ≥ 1− P̂` −
P̂k
Qk

(1−Q`) .

We conclude that the KKT conditions are satisfied for the range α specified in the statement of the theorem. Since the objective
is strictly convex the solution is unique, which completes the proof.

Step 2: We show that as p approaches infinity, α approaches the separation distance. More specifically, we have the following
theorem.



Theorem 6.

αL ≤ κ(P̂ ||Q0) and lim
p→∞

αL = κ(P̂ ||Q0)

We begin the proof by examining the behavior of D∗α and αL. Note that D∗α (the minimizer of (6)) is monotone non-
increasing in α, as increasing α relaxes the constraints. For α = κ(P̂ ||Q0), D∗α = 0 as the constraints allow Pi = Qi for all i
(as KL divergence is minimized if and only if Pi = Qi for all i). Define

γL(α, p) =
1

p(1− α)
log

(
1

ε

)
+

2n

p(1− α)
log (p(1− α) + 1)

for α ∈ [0, 1], p > 0. We can write (7) as

αL = max {α : D∗α ≥ γL(α, p)}

For fixed p, γL(α, p) is strictly increasing in α for α ∈ [0, 1]. This (and since D∗α is monotone non-decreasing in α) implies
existence and uniqueness of αL for fixed p. Next, for fixed α, γL(α, p) is strictly decreasing in p. Since D∗α is not a function
of p, we conclude that αL is non-decreasing in p.

Lastly, to prove the limit statement, we require D∗α be left continuous at α = κ(P̂ ||Q0); for any ε > 0, there exists some
δ > 0 such that D∗

κ(P̂ ||Q0)−δ
< ε. This follows as the objective is continuous in the optimization variables, and constraints are

continuous in α; an arbitrarily small increase in the objective can be realized by sufficiently reducing α.
Step 3: Bound κ(P̂ ||Q)− αL using the closed form solution.
The value of KL divergence at P ∗ from (12) is

D∗α = D(P ∗||Q) =
∑
i 6=`

Qi

(
1− P̂`

1−α

)
1−Q`

log

1− P̂`
1−α

1−Q`

+
P̂`

1− α
log

P̂`
1−α
Q`

=

(
1− P̂`

1− α

)
log

1− P̂`
1−α

1−Q`

+
P̂`

1− α
log

P̂`
1−α
Q`

≤

(
Q` − P̂`

1−α

)2
Q`(1−Q`)

=
Q`

(
κ(P̂ ||Q)− α

)2
(1−Q`)(1− α)2

(14)

where the inequality follows since log(x) ≤ x − 1. We are ready to bound the difference between αL and the separation
distance. Recall the definition of αL; αL must satisfy

D∗αL
≤ 1

p(1− αL)
log

(
1

ε

)
+

n

p(1− αL)
log (p(1− αL) + 1)

and by (14)

Q`

(
κ(P̂ ||Q)− αL

)2
(1− αL)(1−Q`)

≤ 1

p
log

(
1

ε

)
+
n

p
log (p(1− αL) + 1)

which implies the result

κ(P̂ ||Q)− αL ≤

√
1

p
log

(
1

ε

)
+
n

p
log (p+ 1) = O

(√
log p

p

)
.


