
Optimal Defense Actions Against Test-Set Attacks

Scott Alfeld∗ SALFELD@CS.WISC.EDU
Paul Barford∗† PB@CS.WISC.EDU
Xiaojin Zhu∗ JERRYZHU@CS.WISC.EDU
∗Department of Computer Sciences, University of Wisconsin – Madison, Madison WI 53706, USA
†comScore, Inc. 11950 Democracy Drive, Suite 600 Reston, VA 20190, USA.

Abstract
Automated learning and decision making sys-
tems in public-facing applications are vulnera-
ble to malicious attacks. These systems are at
further risk of attack when money is involved,
such as market forecasters or decision systems
used in determining insurance or loan rates.
In this paper, we consider the setting where a
predictor Bob has a fixed model, and an un-
known attacker Alice aims to perturb (or poi-
son) future test instances so as to alter Bob’s
prediction to her benefit. We define a general
framework for determining Bob’s optimal de-
fense action against Alice’s worst-case attack.
We then demonstrate our framework by con-
sidering linear predictors, where we provide
tractable methods of determining the optimal
defense action. Using these methods, we per-
form an empirical investigation of optimal de-
fense actions for a particular class of linear
models – autoregressive forecasters – and find
that for ten real world futures markets, the opti-
mal defense action reduces the predictor’s loss
by between 78 and 97%.

1. Introduction
Systems in domains such as finance, energy, medicine,
entertainment, security, advertising, etc., increasingly
rely on diverse input data. If decisions in these systems
are based on the output of automated learning systems,
then some actors may have incentive to alter (or poison)
input data so as to affect the learned system. Thus, any
such system should be robust to these threats.

The study of effective strategies in the presence of adver-
saries has long been of interest (Tzu, Circa 500 B.C.E.).
In this work, we focus on the setting where an attacker
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alters data fed into an already learned model. Namely,
we consider the setting where a predictor, Bob, has a
fixed, publicly known prediction function. For example,
Bob may be an insurance company estimating the ex-
pected future cost of an applicant to determine terms
(e.g., monthly premium) of the insurance plan offered.
An actor, the adversary Alice with motivation unknown
to Bob, asserts her limited control over the features (e.g.,
to lie about her age, credit history, etc.) fed into Bob’s
prediction function, in aims to pull his prediction toward
her goal. An attacker is defined by her target and her loss
function (measuring the distance of Bob’s resulting pre-
diction to her target), both of which we assume are un-
known to Bob. Bob may select some action from a set of
available defense actions, and aims to limit the effective-
ness of any potential attacker. In this work, we answer
the question: What action should Bob take to best defend
against an unknown attacker, assuming worst case initial
values, attacker target, and attacker loss function?

We address the issue of defense explicitly, by framing
the interaction between attacker and predictor as a two
player, non-zero sum, Stackelberg game. Specifically, in
this work we make three primary contributions: (i) We
define a general framework for a predictor’s explicit de-
fense strategy against intelligent, unknown adversaries.
(ii) We utilize the framework to provide tractably com-
putable optimal actions for linear predictors. (iii) We em-
pirically demonstrate our methods on real world data
sets, and perform a investigation of their properties on
synthetic data.

2. Defense Framework
An agent Bob is a predictor with a fixed function map-
ping instances in an input space X to target values in
an output space Y . We denote Bob’s fixed, presumably
learned, prediction function as f : X → Y . Our frame-
work is applicable to general prediction. That is, Bob’s
task may be, e.g., (binary) classification (f : Rd →
{0, 1}) regression (f : Rd → R), clustering (hard or
soft) (f : Rd → [1, . . . , k] or f : Rd → Sk), rank-



ing (Rd×n →
({1,...,k}

k

)
) or other forms of prediction.

For ease of notation we assume X ⊂ Rd and Y ⊂ Rm,
where d,m ∈ Z+.

Alice is an adversary with limited ability to perturb or
poison test instances before Bob observes them. She
aims to perform an attractive (Alfeld et al., 2016) at-
tack, moving Bob’s prediction towards some target. Af-
ter observing a test instance1 xxx ∈ X , Alice will select
a poison vector αααααααααatr and supply Bob with the poisoned
instance xxx + αααααααααatr. We define Alice in terms of: (i) Her
target ttt ∈ Y , which she aims to pull Bob’s prediction to-
ward. (ii) Her loss function ‖·‖A, where ‖000‖A = 0 and
‖aaa‖A > 0 ∀aaa 6= 000. (iii) Her set of feasible attacksA. (iv)
Her effort function g (·) : A → R, defining the costs she
incurs for a given attack (g (ααα) ≥ 0 ∀ααα).

We assume a powerful attacker. Namely, Alice has full
knowledge of Bob, and will select the attack which min-
imizes the sum of her loss and effort. Formally, Alice
selects the optimal attack by solving:

αααααααααatr (A,xxx, ttt, ‖·‖A , g (·)) (1)

, argminααα∈A ‖f(xxx+ααα)− ttt‖A + g (ααα)

For a variety of settings, there are known, tractable meth-
ods for computing Alice’s optimal attack (Alfeld et al.,
2016). We instead focus on Bob, defining a framework
for determining his optimal method of defending against
an unknown adversary Alice.

We phrase the interplay between Alice and Bob as a
one-shot, two-player, non-zero-sum, Stackelberg game.
For brevity, we restrict our attention to settings where
Bob considers only pure (as opposed to mixed) strate-
gies, and his actions are to further restrict Alice. Our
methods, however, extend beyond this. In further inter-
est of clarity, we make the order of events explicit: (1)
Bob selects action β ∈ B. (2) Alice observes f, β, and
xxx. (3) Alice selects her poison vector αααααααααatr (from A con-
strained by β). (4) Bob observes xxx+αααααααααatr, and suffers loss
‖f(xxx+αααααααααatr)− f(xxx)‖B . Note that Bob does not observe
his loss, as he never observes the unpoisoned xxx.

In keeping with the assumption of a powerful attacker,
we assume that Bob does not know Alice’s target, loss
function, or effort function, but he does know her con-
straints (definingA). This allows our methods to be used
in evaluating the robustness of a system against bounded
attackers – Bob can evaluate the worth of limiting an at-
tackers abilities. We further assume that Bob does not
know the unpoisoned value xxx (if he did, he could simply
undo Alice’s attack). Bob aims to minimize the devia-

1To avoid cluttersome notation we assume only one test in-
stance. All methods described herein, however, extend easily to
the case where Bob receives a test set of more than one point.

tion, as defined by his loss function ‖·‖B , between his
prediction on the poisoned test set and what he would
have predicted on the unpoisoned set. To do this, Bob se-
lects some action β ∈ B. By selecting action β ∈ B, Bob
reduces Alice’s feasible set of attacks to Aβ . Formally,
Bob seeks to solve the bi-level optimization problem:

argmin
β∈B

max
xxx,‖·‖A,g(·),ttt,αααααααααatr

∥∥f(xxx)− f(xxx+αααααααααatr)
∥∥
B

(2)

s.t.αααααααααatr = arg min
ααα∈Aβ

‖f(xxx+ααα)− ttt‖A + g (ααα)

To simplify, we exploit the duality between considering
all possible attractive attacks, and considering the one re-
pulsive attack – the attack which explicitly aims to maxi-
mize Bob’s loss. We define the following single-level op-
timization problem, equivalent to (2) (we omit the proof
for brevity):

argmin
β∈B

max
xxx∈Rd,ααα∈Aβ

‖f(xxx)− f(xxx+ααα)‖B (3)

In essence, we are creating a phantom adver-
sary performing the repulsive attack: αααrep ,
argmaxααα∈A ‖f(xxx)− f(xxx+ααα)‖B We then have
Bob defend against this phantom Alice, thus limiting the
potential effect of any attacker. In doing so, we formulate
the problem in standard minimax form rather than a
bi-level optimization problem. Rather than maximizing
over all possible targets, effort, and loss functions, we
now maximize over only the potential initial values xxx.

3. Linear Predictors
Thus far we have defined a framework (eqn (3)) for se-
lecting an optimal defense action for a general predictor.
In what follows, we utilize this framework, and describe
instantiations of Alice and Bob inspired by real-world
settings. These instantiations result in tractable methods
for determining Bob’s optimal defense action. For sim-
plicity, we assume that B is a finite set. In this setting,
the task of determining Bob’s optimal defense action re-
duces to computing the optimal repulsive attack. Cases
where Bob has a continuous or countable infinite set of
actions are left as future work.

When Bob’s loss is convex, it is often tractable to com-
pute Alice’s optimal attractive attack – that is, minimiz-
ing a quadratic function subject to hard constraints. How-
ever, even when Bob’s loss is convex, the task of comput-
ing an optimal repulsive attack – maximizing a quadratic
function subject to hard constraints – is NP-Hard in gen-
eral (e.g., under box constraints) (Nocedal & Wright,
2006). We consider a subset of all predictors (Bobs) and
attackers (Alices) so as to yield tractable methods for
solving (3).
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We consider the case where Y is continuous (e.g., regres-
sion) and let Bob be a (homogeneous) linear predictor.
That is, his prediction function may be written as:

f(xxx) ,Mxxx (4)

for some matrix M . We note that by linearity of f ,

αααrep (A,xxx, ‖·‖B) , argmax
ααα∈A
‖f(xxx+ααα)− f(xxx)‖B

= argmax
ααα∈A
‖f(ααα)‖B (5)

, αααrep (A, ‖·‖B) (6)

That is, the optimal repulsive attack is independent of the
test instance. This results in (3) being equivalent to:

argmin
β∈B

max
ααα∈Aβ

‖f(ααα)‖B (7)

= argmin
β∈B
‖f(αααrep (Aβ , ‖·‖B))‖B (8)

We let Bob’s loss be the squared Mahalanobis norm:

‖f(ααα)‖B , ‖f(ααα)‖2W = f(ααα)>Wf(ααα) (9)

where W = V >V is a positive-definite matrix. This loss
function generalizes mean squared error. It both yields
mathematical benefits, and is applicable in many real
world settings. We consider the case where each of Bob’s
actions restricts Alice to select an attack from some el-
lipse. That is, each of Bob’s actions β ∈ B defines Al-
ice’s feasible attacks as:

Aβ , {ααα : ‖ααα‖Cβ ≤ c} (10)

where ‖ααα‖Cβ =
√

(Cβααα)>Cβααα, Cβ = G>βGβ is a
positive-definite matrix and c ∈ R+.

Under these conditions, we may leverage the alignment
of Bob’s loss with Alice’s constraints (in that they are
both quadratic) to convert the optimization problem to
that of computing an induced matrix norm. With proof
omitted for brevity, we have:

αααrep (Aβ , ‖·‖B) , cG−1β sss1 (11)

where sss1 is the right-singular vector corresponding to the
largest singular value of VMG−1β . Further, Bob’s loss
against the worst case attack is

‖f (αααrep (Aβ , ‖·‖B))‖B = ‖cV MG−1β ‖2 (12)

where ‖ · ‖2 denotes the spectral norm. Therefore αααrep

may be found by computing G−1β and the SVD of
VMG−1β , or approximated (e.g., for large matrices) by
applying the power method to (VMG−1β )>(VMG−1β ).
By computing this quantity for each β ∈ B (recall B is
finite), Bob may determine which action minimizes (7).
We note that Bob need only useG−1β , notCβ orGβ when
determining his defense action. We demonstrate the use-
fulness of this fact in the following section.

4. Experiments
While the framework we have described is broadly ap-
plicable to linear predictors, here we focus on the set-
ting where Bob is forecasting future values of a time se-
ries. Specifically, we use a linear autoregressive model
and recursive forecasting strategy. We select this setting
because (a) data manipulation attacks are a real-world
concern in forecasting, and (b) prior work (Alfeld et al.,
2016) has determined optimal (attractive) attacks against
linear forecasters, specifically evaluating the efficacy in
the context of futures markets’ settle prices.

Bob uses the values for the last d time periods
x−d, . . . , x−1 to forecast the next h values into the fu-
ture (x̂0, . . . , x̂h−1). He does so with an order-d linear
autoregressive model: xt =

∑d
i=1 θixt−i, and recursive

forecasting strategy. Without loss of generality we as-
sume h > d. We note that the forecasting function may
be written as:

f (xxx) =Mxxx , ShZxxx (13)

Where S is the h×h one-step matrix for model θθθ, and Z
is the h× d zero-padding matrix.

S ,

 Ih−1×h−1000h

000>(h−d−1)×1
←−
θθθ >

 , Z ,

[
000(h−d)×d
Id×d

]

Where we denote the reverse of θθθ as
←−
θθθ :
←−
θ i = θd−i+1.

In defining Bob’s set of possible actions, we consider
performing an inspection on a single time period. In the
general setting of prediction, this is akin to Bob inde-
pendently verifying a single feature. For simplicity of
demonstration, we let one time period be one day, and
assume that on the day Bob performs an inspection, Al-
ice is unable to lie – on all other days, Alice is bound
by her original set of feasible attacks A. We assume that
Alice’s original set A of feasiable attacks is an d-ellipse
defined by {ααα : ‖ααα‖C ≤ c} and Bob is therefore re-
stricting her to a (d − 1)-ellipse. Recall that Bob’s ac-
tions may be defined in terms of G−1β directly. By letting
G−1β [i, j] = G−1β [j, i] = 0 for all j, we encode Alice’s
inability to affect day i; her value for αααi is ignored.

For brevity, we consider only d = 5, h = 7 with spher-
ical loss (total squared deviation) for Bob and spherical
constraints for Alice for each experiment: W = C = I .

4.1. Futures Markets Experiments

For ten different futures markets, we obtained2 daily
settle price data. For each, we estimated θθθ using Yule-

2Data is freely available from www.quandl.com. Identifica-
tion codes for individual datasets are provided in Figure 1.
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Figure 1: For each the 10 futures markets, we denote Bob’s loss
against the worst case attack in red. In blue we show Bob’s loss
against the worst case attack given his optimal defense action.

Walker estimation (Box et al., 2011) on approximately
one month’s worth of centered data – the exact dates
used varied across markets based on values available. We
compared Bob’s loss under the optimal strategy, select-
ing an action at random, and the null strategy where he
takes no action on each future market. We report loss un-
der all three strategies in Figure 1. Universally, taking
the optimal defense action considerably reduces Bob’s
worst-case loss – defending resulted in a 78% (Russian
Ruble) to > 97% (Silver) reduction in loss compared to
the null strategy across the ten markets. We note that on
each futures market, the optimal action was to lock down
day−1 (the last day), and for each learned model we find
|θ1| > |θi|, i = 2, . . . , 5.

4.2. Synthetic Experiments

From the futures markets data, one may be tempted to
form two natural hypotheses: (a) The optimal action is al-
ways to select the day imax corresponding to the maximal
(in magnitude) θi: imax , − argmaxi |θi|. (b) The opti-
mal action is always to select the last day. Hypothesis (a)
is supported by the observation that Bob’s first prediction
will be most affected by the value αααmax

i , and subsequent
predictions will in turn be affected by the first. Hypoth-
esis (b), in contrast, is motivated by the observation that
while x−d directly affects only x̂0 (all later predictions
are affected by x−d only through x̂0), the value x−1 di-
rectly affects predictions x̂0, . . . , x̂d−1.

To test these hypotheses, we run an additional ex-
periment. To emulate models that may be encoun-
tered in practice, we construct 10,000 stationary models
θθθ(1), . . . , θθθ(10000) by drawing each θθθ(i) iid from a unit

Gaussian, and then rejecting any non-stationary samples.
We then determine the percentage of models on which
hypotheses (a) and (b) yield the optimal defense action.
We find that selecting the day corresponding with the
maximal θi (hypothesis (a)) is optimal only ≈ 55% of
the time. Selecting the last day (hypothesis (b)) is opti-
mal only ≈ 49% of the time.

5. Related Work
The setting of so-called test-set attacks has been ex-
amined under a variety of titles. One such example is
“evasion attacks”, where the predictor performs binary
classification (e.g., spam detection (Nelson et al., 2009;
Lowd & Meek, 2005), intrusion detection (Tan et al.,
2002)) and the attacker aims to have their bad (e.g.,
“spam” or “intrusion”) sample classified as good (e.g.,
“ham” or “normal traffic”). Robust Learning (Glober-
son & Roweis, 2006; El Ghaoui et al., 2003), consid-
ers the setting where a test set is drawn from a distri-
bution distinct from the training set’s. The setting pre-
sented herein is distribution free, and an example covari-
ate shift (Quionero-Candela et al., 2009). (Goodfellow
et al., 2015) argues that linearity in the models is a pri-
mary cause of attack vulnerability. This theory is sup-
ported by in our work and warrants further investigation.

A primary goal of this line of research is defense. We
borrow from the framework and methodology used in
(Alfeld et al., 2016), which derived optimal (attractive)
attacks against autoregressive forecasters. A separate line
of research has posed the problem of learning in the pres-
ence of adversaries in game theoretic contexts ((Liu &
Chawla, 2009; Brückner et al., 2012; Dalvi et al., 2004;
Brückner & Scheffer, 2009; 2011)). (Dalvi et al., 2004)
and (Letchford & Vorobeychik, 2013) phrase the inter-
play between Alice and Bob as game similar to ours, and
specifically addresses Bob’s defense strategy.

6. Conclusions
The framework for our study is a predictor targeted by
an attacker which seeks to influence its predictions. Our
goal is to identify an optimal defense against such an at-
tack. We allowed for a powerful, knowledgeable attacker,
yielding a two player, non-zero sum Stackelberg game.
By, in essence, constructing a phantom attacker based on
Bob’s loss function, we are able to phrase this interplay
as a standard minimax formulation. We utilize our frame-
work to identify the optimal defense action for worst-
case attacks against linear predictors. In future work, we
plan to apply our methods to non-linear predictors, in
hopes to derive tractable methods of identifying optimal
defense actions.
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