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Abstract. We consider multi-target linear regression in the presence of
a deployment-time attacker. Specifically, we examine the effects of incor-
porating a maximum-rank constraint on the learned weight matrix (i.e.,
performing reduced-rank regression). For a broad class of practically rel-
evant defender and attacker settings, we derive theoretical bounds on the
change in adversarial robustness as a function of the rank constraint. In
the classical setting—where the learner minimizes Mean Squared Error
and the attacker is constrained by an ℓ2 constraint—we show that ad-
versarial robustness is unaffected by rank reduction. In contrast, under
more general and practical settings, rank constraints can dramatically
alter robustness. In general, these bounds depend on the eigenvalues of
matrix W, which defines defender loss. These bounds and accompanying
analysis provide both practical value and further develop a foundational
understanding of the robustness of linear methods.

Keywords: Reduced-Rank Regression · Adversarial Learning · Linear
Methods.

1 Introduction

Multi-target regression, which models multiple response variables (i.e., targets)
at once, is integral to systems in a range of fields including finance, healthcare,
and engineering. These machine learning systems may be vulnerable to adver-
saries that attempt to influence outcomes by injecting carefully crafted inputs.
Hence, it is crucial to understand and ensure the robustness of these systems
against such adversaries.

Many machine learning systems use linear methods to model their data.
When jointly predicting multiple targets, a common method is to assume that
the underlying coefficient matrix is of full-rank. A model is learned for each target
independently. That is, no additional knowledge is gained by formulating the
problem as a multi-variate regression task and learning the coefficients jointly.

To properly address the interconnected nature of a multi-target dataset, prac-
titioners often use specialized multi-target regression methods. These methods
are based on the key idea that targets must be tied together during learning. One
common strategy is to force the learner to learn an internal representation of
the data that implies a dependency between targets by limiting the rank of the
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Table 1: Mathematical notation.
Variable Description Domain

n Number of data samples N
d Number of input features N
q Number of targets N
r Rank constraint of regressor N
c Upper bound on attacker perturbation R+

x An input vector Rd

y An output vector Rq

α Attack vector to be added to x Rd

X Input data matrix Rn×d

Y Output data matrix Rn×q

M Model coefficient matrix Rq×d

W Defining matrix of defender loss {A ∈ Rq×q | A ≻ 0}
C Defining matrix of attacker constraint {A ∈ Rd×d | A ≻ 0}
V Square root of W (i.e., W = V⊤V) {A ∈ Rq×q | A ≻ 0}
G Square root of C (i.e., C = G⊤G) {A ∈ Rd×d | A ≻ 0}
f(·) Prediction function R −→ R

parameter matrix (Reduced-Rank Regression (RRR)) [11], applying a shrinking
matrix [19], or adding a special regularization term [18].

Adversarial attacks on single-target linear learners are well-studied in various
contexts [1,14]. However, it remains unclear how the addition of multi-targetness
affects the robustness of linear learners.

The primary contribution of this paper is a series of seven theoretical bounds
on the change in model vulnerability to deployment-time attacks when applying
a rank constraint in multi-target linear regression (i.e., learning a model using
RRR). The first bound applies to what we refer to as the classical setting—the
scenario where the defender minimizes Means Squared Error (MSE) and the
attacker is bound by an ℓ2 constraint. The rest consider a series of increasingly
general settings.

Throughout this manuscirpt we use lower-case letters to denote scalars, bold
lower-case letters to denote vectors, and bold upper-case letters to denote ma-
trices. The specific mathematical notation is presented in Table 1.

We highlight the value of these contributions for three overlapping but dif-
ferent communities. For the practitioner, the bounds we present aid in decision
making while performing RRR in adversarial settings. For the researcher study-
ing linear predictors, we strengthen the community’s understanding of the tie be-
tween model robustness and the spectra of the involved matrices. For the broader
adversarial learning community, we highlight a weakness of the all-too-common
practice of exclusively studying the classical setting. This setting is mathemat-
ically elegant and as such, it is the primary focus in much of the adversarial
learning literature. However, as we show, the more realistic setting—where the
defender minimizes a Mahalanobis loss and the attacker is constrained by an
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ellipsoid rather than a sphere—demonstrates behavior that is obfuscated by the
simplified special case. Specifically, we demonstrate that applying a rank con-
straint in multi-target linear regression has no effect on adversarial robustness
in the classical setting, but can dramatically change the robustness in more gen-
eral and realistic settings. We provide a series of theoretical bounds that range
from the classical setting to the most general case where the defender’s loss and
attacker constraints are defined by Mahalanobis metrics. This serves to develop
a foundational understanding of how adversarial robustness is affected by design
decisions for more realistic attackers and defenders.

Throughout this manuscript we use the following running example for clarity.
While our example is based on economic forecasting, note that our results are
not specific to any particular application (economic or otherwise). We use this
example only to facilitate understanding.

Running Example. Consider a defender aiming to predict next quarter’s
profits for target companies T1, T2, and T3. Companies T1 and T2 are in the
food service industry while T3 is in retail. To make their predictions, the defender
monitors regional shopping trends and use the number of sales of various items as
input features. An attacker has limited capability to affect the prices of various
raw materials, and seeks to use that capability so as to make the defenders
predictions as wrong as possible.

2 Background on Reduced-Rank Regression

Reduced-rank regression (RRR) is a linear regression technique that explic-
itly ties together targets during learning via a rank constraint on the coefficient
matrix. Consider the learned prediction function f of a general linear model:

f(x) = Mx (1)

where M ∈ Rq×d is the model coefficient matrix and x ∈ Rq×1 is the input
vector.

The learner aims to learn the model matrix M by minimizing the mean
loss on the training set (X,Y), where X ∈ Rn×d is the matrix of inputs and
Y ∈ Rn×q is the matrix of targets. Each row xi for i ∈ {1, ..., n} of X and
corresponding row yi of Y forms one training sample (xi,yi). Let the loss be a
generalization of mean squared error (MSE)1 — the squared Mahalanobis norm.
The Mahalanobis norm of a vector a ∈ Rq is defined as follows:

||a||2W = a⊤Wa (2)

where W ∈ Rq×q is a positive definite matrix.
In ordinary least squares (OLS) estimation, the learner minimizes MSE. We

note that OLS is the most commonly studied linear method. However, real-
world applications often require models to account for factors beyond uniform
1 Mean squared error is a special case of Mahalanobis norm, where W = Iq.
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error, such as the relative importance or interaction of prediction targets. These
factors are not captured by standard MSE. Hence, we consider a learner that
minimizes the Mahalanobis norm, which allows for formalization of robustness
as a function of W (see Section 4). Generalizing to this broader class of learners
not only better reflects practical deployment but also provides deeper insight
into the adversarial robustness of multi-target regression models.

Full-rank regression (i.e., joint OLS estimation) aims to solve the following
optimization problem:

MOLS = argmin
M∈Rq×d

1

n

n∑
i=1

||f(xi)− yi||2W (3)

In RRR, the rank of the coefficient matrix is constrained to some 1 ≤ r < q
during optimization. Hence, the constrained optimization problem of the RRR
learner is as follows:

Mr = argmin
M∈M

1

n

n∑
i=1

||f(xi)− yi||2W (4)

M def
= {M : M ∈ Rq×d s.t. rank(M) ≤ r} (5)

This rank constraint forces the learner to relate the target dimensions together.
In comparison to full-rank regression, RRR resists overfitting to training data.
That is, given a noisy dataset, learning a model under a rank constraint often
improves the test accuracy of the model.

Running Example. In our running example, the profits of T1, T2, and T3

are not independent. External latent features, such as weather and social trends
affect T1 and T2 (the companies in food service) together. In other words, the
environment is best modeled as one of deficient rank. As such, performing RRR
will likely yield a better generalization error than independent OLS.

In this paper, we formalize the effect of constraining the rank of the coeffi-
cient matrix on the adversarial robustness of the learned model. We define the
adversarial robustness of the learner under the threat model presented in the
following section.

3 Threat Model

In this work, we focus on a deployment-time attacker who perturbs inputs at
test time, rather than manipulating the training data. The defender learns a
model M. Consider an adversary that observes a point x and perturbs it by
adding a vector α. The adversary’s goal is to maximize the defender’s loss on
the perturbed point x + α. This constitutes a repulsive attack, in which the
adversary pushes the model’s prediction away from the true target value. We
model this interaction in a zero-sum setting, where the adversary’s gain is equal
to the defender’s loss.
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The adversary knows the model M but is constrained by how much they can
alter the input. That is, they must pick a perturbation vector α such that the
Mahalanobis norm of α is less than a scalar constraint c.

||α||C ≤ c (6)

where C ∈ Rd×d represents the geometry of the attacker constraint. If C =
Id, the attacker is bound by the ℓ2 norm of its perturbation vector. The ℓ2-
bounded attacker is a commonly studied adversarial setting. However, in many
real-world applications, an attacker may have unequal control over different input
features. In such cases, C may deviate from the identity, reflecting a non-uniform
constraint on perturbations in each feature. Hence, it is useful to consider the
general attacker with an arbitrary positive definite matrix C.
The attacker aims to solve the following constrained optimization problem:

αrep = argmax
α∈A

||f(x)− f(x+α)||2W (7)

A def
= {α : ||α||C ≤ c} (8)

Then, by linearity of f , the attacker’s optimization problem is:

αrep = argmax
α∈A

||Mx−M(x+α)||2W (9)

= argmax
α∈A

||Mα||2W (10)

That is, the optimal repulsive attack is independent of the test instance. This
allows us to efficiently compute the exact solution for an optimal repulsive attack
on linear regressors [2] and mathematically assess a model’s robustness based
solely on its parameters (without requiring access to any input data).

We assume that C and W are positive definite matrices. Define and let:

C = G⊤G (11)

W = V⊤V (12)

By Theorem 2 from Alfeld et al. [2], we have:

αrep = cG−1s1 (13)

where s1 is the right singular vector corresponding to the largest singular value
of VMG−1 and the corresponding induced defender loss is the spectral norm of
VMG−1:

||Mαrep||2W = ||VMG−1||2 (14)

That is, for any linear regressor with prediction function f , the optimal repul-
sive attack can be efficiently computed as a function of V, M, and G, where V
captures the loss of the defender, M is the model matrix such that f(x) = Mx,
and G captures the constraints of the attacker.



6 S. Choi and S. Alfeld

Under this threat model, the attacker aims to maximize the increase
in the defender’s loss due to the perturbation. We note that this can
be thought of as a “worst-case attacker”, as it causes the maximum change in
defender loss that any attractive attacker (i.e., an attacker that aims to change
the output to their preferred value) could cause. Therefore, we denote “attacker
happiness” as the induced defender loss (the spectral norm of VMG−1). To
evaluate the adversarial robustness of RRR, we investigate the change in attacker
happiness as an effect of constraining the rank of the coefficient matrix to be
≤ r. In particular, we present upper and lower bounds on how much the attacker
happiness can differ between full-rank and reduced-rank regression, given r.

4 Bounds on Robustness

In this section, we present various upper and lower bounds on how much the
induced defender loss, or “attacker happiness”, is affected by constraining the
rank of the defender’s weight matrix.

A defender employing a RRR learner must choose the appropriate r for its
task. It is useful to understand how its choice of r may affect the vulnerability
of the learned model.

We first consider the case which we call the classical setting : the defender
learns models by minimizing MSE, and the attacker is bounded by spherical
constraints. In this case, W = Iq and C = Id.

4.1 Case 1. The classical setting

Theorem 1. If W = Iq and C = Id, constraining the rank of the coefficient
matrix to r does not affect attacker happiness.

Proof. Consider an unconstrained linear learner that learns the model coefficient
matrix M. Without loss of generality, we assume that min(d, q) = q. Then,
rank(M) ≤ q.

The spectral norm of A ∈ Ra×b is defined as:

||A||2 = σmax(A) (15)

where σmax denotes the maximum singular value of A.
The low-rank approximation of a matrix A can be computed using singular

value decomposition (SVD). The SVD of A is a factorization of A into a rotation,
followed by a rescaling, followed by another rotation [9].

A = ŨΣ̃Ṽ⊤ (16)

where Σ̃ ∈ Ra×b is a sorted diagonal matrix of the singular values of A in
descending order and Ũ ∈ Ra×a, Ṽ ∈ Rb×b are the matrices in which the columns
are the corresponding left and right singular vectors, respectively2.
2 Standard notation for singular value decomposition is A = UΣV⊤. In this paper,

we use Ũ, Σ̃, and Ṽ to avoid overloading V.
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We use this decomposition to reconstruct a low-rank approximation of the
original matrix M.

M = ŨΣ̃Ṽ⊤ (17)

Recall that M ∈ Rq×d. Then, Σ̃ ∈ Rq×d. To reconstruct a rank r matrix,
where r < q, we keep the top r rows of Σ̃ and zero out the rest to create Σ̃′.
Then, we compute:

M′ = ŨΣ̃′Ṽ⊤ (18)

M′ is a rank r approximation of the model weight matrix M, where r < q.
That is, M′ is a rank r approximation of the weight matrix learned by a full-rank
regressor.

By definition of SVD, the maximum singular value of the model M is pre-
served in its approximation M′. That is,

||M||2 = ||M′||2 (19)

Let the model Mr denote the learned coefficient matrix by RRR with rank
constraint r.
Theorem 2.2 of Bernstein [15] states that minimizing equation (4) (i.e., RRR)
is equivalent to minimizing equation (3) (i.e., OLS) then performing low-rank
approximation via the SVD. That is, M′ = Mr. It follows that:

||M||2 = ||M′||2 (20)
= ||Mr||2 (21)

Recall that attacker happiness for linear models is ||VMG−1||2. When W = Iq
and C = Id, we have V = Iq,G = Id. Then, attacker happiness is simply the
spectral norm of the weight matrix M.

Atkr.happ.(M, Iq, Id) = ||M||2 (22)

Since ||M||2 = ||Mr||2 by equation (21), we have:

hr =
Atkr.happ.(M,W,C)

Atkr.happ.(Mr,W,C)
(23)

=
||M||2
||Mr||2

(24)

=
||M||2
||M||2

(25)

= 1 (26)

Thus, attacker happiness is unaffected by reducing the rank of the coefficient
matrix from min(d, q) to 1 ≤ r < min(d, q). □

Recall that RRR is a method of performing multi-target linear regression
that, in comparison to full-rank regression, improves the test accuracy of the
model. Often, improving the performance of a model may reduce adversarial
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robustness. However, Theorem 1 states that any optimal linear learner with a
maximum-rank constraint of r, where 1 ≤ r ≤ min(d, q), will learn a model with
equal adversarial robustness. In this case, there is no decrease in robustness
for an increase in performance. This bound provides the ideal model robustness
guarantee for any linear learner minimizing MSE.

4.2 Robustness in practical settings

While Theorem 1 covers the most commonly studied adversarial setting, ex-
ploring alternative defender–attacker configurations can offer further insight.
Moreover, these settings, though less studied, are also commonly encountered in
practice. In addition, they provide a more general lens through which to under-
stand the effects of rank constraint on model robustness.

Recall that we want to understand how the choice of r may affect the vul-
nerability of the learned model. Hence, we aim to bound the ratio of attacker
happiness for M to the attacker happiness for Mr.

hr =
Atkr.happ.(M,W,C)

Atkr.happ.(Mr,W,C)
(27)

Bounds on hr capture how much the attacker happiness may change as a
result of the defender reducing its rank to r. Suppose Atkr.happ.(M,W,C) = a,
where a ≥ 0 is some scalar value. If the bounds 1

3 ≤ hr ≤ 2 hold, then it follows
that 1

2a ≤ Atkr.happ.(Mr,W,C) ≤ 3a. Knowing these bounds on hr allows
the defender to, given the loss function it minimizes, assess the implications of
choosing a rank constraint r on the vulnerability of the learned model.

We consider the following four adversarial settings, ranging from least to
most general. Case 1 has already been discussed; for each of the additional three
cases, we provide upper and lower bounds on hr.

– Case 1. Defender loss is MSE:
W = Iq, C = Id
This covers the classical setting. In this case, hr = 1 (see section 4.1).

– Case 2. Defender loss is a weighted sum of targets, and the attacker is ℓ2-
bound.
W = (wij), ∀i, j ∈ {1, 2, ..., q}, i ̸= j =⇒ wij = 0, C = Id
This is a generalization of Case 1, where the defender predicts q targets and
weights the importance of the targets differently (i.e., W is a diagonal ma-
trix).

– Case 3. Defender loss is Mahalanobis squared norm, and the attacker is
ℓ2-bound.
W is any arbitrary positive definite matrix, C = Id
This is a generalization of Case 2, where we consider the general defender
minimizing squared Mahalanobis norm.
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– Case 4. The general case.
W and C are arbitrary positive definite matrices.

Case 2 represents a common and practically relevant setting. It is a gener-
alization of Case 1, as it considers a larger subset of W, including Iq. Case 3
considers a general defender paired with a standard (i.e., ℓ2-bounded) attacker,
resulting in a broader robustness bound. This is a generalization of Case 2, as it
considers all possible W. Case 4 is the most general case, allowing for arbitrary
defender and attacker constraints, and yields the bound that requires minimal
assumptions.

4.3 Case 2. Defender considers a weighted sum of targets

Consider the case in which the defender cares more about its performance on
certain targets than others. That is, the defender’s loss is weighted MSE, where
W = diag(w),w ⪰ 0. For i ∈ {1, ..., q} wi is the weight that represents how
much the defender cares about its performance on the i-th target. The attacker
is constrained by ℓ2 norm (i.e., C = Id). In this case, W is a diagonal matrix.

Running Example. In our running example, suppose the predictions of the
companies’ profits are informing investment and risk management decisions of a
client. The client holds large equity positions in T1 and T2, making accurate fore-
casts for these companies particularly critical. As a result, prediction errors for
T1 and T2 carry greater consequences than errors for T3. This unequal weighting
of targets is not captured when the defender’s loss is MSE (i.e., when W = Iq).

Theorem 2. If W is a diagonal matrix and C is the identity matrix (C = Id),
the following bounds on hr hold:

σq−r+1(V)

||V||2
≤ hr ≤ ||V||2

σq−r+1(V)

where σq−r+1(V) denotes the (q− r+1)-th largest singular value of V (i.e., the
r-th smallest singular value of V).

Proof. We aim to bound hr, which is defined in equation (27) and repeated
below:

hr =
Atkr.happ.(M,W,C)

Atkr.happ.(Mr,W,C)

Recall the definition of attacker happiness for linear models.

hr =
||VMG−1||2
||VMrG−1||2

(28)

Since C = Id, we have G−1 = Id.

hr =
||VM||2
||VMr||2

(29)
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We first prove the upper bound on hr. By the submultiplicativity of the spectral
norm3, we have:

||VM||2 ≤ ||V||2||M||2 (30)

Consider the SVD of M and Mr:

M = ŨΣ̃Ṽ⊤ (31)

Mr = ŨΣ̃′Ṽ⊤ (32)

where Σ̃′ consists of the top r rows of Σ̃.
We note that Ũ and Ṽ are orthogonal rotation matrices by definition of the

SVD [9]. Then, the singular values of VMr are determined only by V, Ũ, and
Σ̃′. Hence, without loss of generality, we let Ṽ = Iq.

||VMr||2 = ||VŨΣ̃′||2 (33)

By assumption, V is a diagonal matrix.

V =

v1 . . .
vq


Then, V is a rescaling matrix, and the elements {v1, ..., vq} of V are the singular
values of V.

Recall that Ũ is a orthogonal rotation matrix. Therefore, the singular values
of ŨΣ̃′ are equal to those of Σ̃′, but the singular vectors of ŨΣ̃′ are determined
by the columns of Ũ and, importantly, may not be axis-aligned4. Consider the
case in which Ũ is a non-axis-aligned rotation matrix, i.e., a matrix such that
the columns of ŨΣ̃′ are non-axis-aligned. Then, applying V will rescale ŨΣ̃′

along non-singular vectors. Clearly, this results in a smaller change in the sin-
gular values than when V directly rescales along the singular vectors of ŨΣ̃′.
Hence, without loss of generality, let Ũ be a permutation matrix. Then, ŨΣ̃′ is
a diagonal matrix of the singular values of M′ in some order, determined by Ũ.

The minimum ||VMr||2 occurs when the smallest values of V align with the
largest singular values of Mr.5 We can choose Ũ to be the permutation matrix
such that this alignment occurs. Therefore, the following holds:

||VMr||2 ≥ σq−r+1(V)||Mr||2 (34)

3 For any two matrices A,B, ||AB||2 ≤ ||A||2||B||2.
4 A set of vectors is said to be axis-aligned when each vector has at most one non-zero

element.
5 In the general setting (i.e., if C is an arbitrary d × d matrix), this optimization

problem is the following: Given vectors x, y, z, find the permutation matrices D, E,
and F such that the maximum of the component-wise product of Dx, Ey, and Fz
is minimized. Note that this is NP-hard to compute [10].
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where σq−r+1(V) denotes the (q − r + 1)-th largest singular value of V. Note
that since V ∈ Rq×q, the (q − r + 1)-th largest singular value of V is the r-th
smallest singular value of V.

Finally, putting equations (30) and (34) together, we have:

||VM||2
||VMr||2

≤ ||V||2||M||2
σq−r+1(V)||Mr||2

(35)

Recall that ||M||2 = ||Mr||2 by equation (21). Thus, we have:

hr =
||VM||2
||VMr||2

(36)

≤ ||V||2||M||2
σq−r+1(V)||Mr||2

(37)

=
||V||2

σq−r+1(V)
(38)

which upper bounds hr as desired. □

We include the proof of the lower bound in Appendix A.1 for clarity. Note that
this proof closely parallels the proof of the upper bound with minor differences.

In Case 2, the defender is a linear learner that considers weighted MSE.
When the learner is constrained to rank r, the change in attacker happiness is
bounded as a function of r. This bound is independent of M; that is, it holds
for any arbitrary linear model, and can be computed as long as W is known.

4.4 Case 3. General defender

While we have covered the two most common defenders in the area of multi-
target regression, there may be scenarios in which W is some non-identity, non-
diagonal matrix. Hence, we now generalize to the case where W is any positive
definite matrix W ∈ Rq×q, i.e., where the defender is any linear learner mini-
mizing squared Mahalanobis norm. The attacker is constrained by ℓ2 norm (i.e.,
C = Id).

A non-identity, non-diagonal W is able to capture the preference for error
consistency. If the model incorrectly predicts a lower value for one target but
a higher value for another target, there is an inconsistency in the error of the
model. This inconsistency may, in some applications, be more or less desirable
than an error in which the model incorrectly predicts higher (or lower) values
for both targets.

Running Example. In our running example, suppose the predictions of the
companies’ profits are used as inputs to a broader economic forecasting model.
If T1 and T2 are both over- or both under-estimated, then the broader economic
model will infer a growth/decline in the food service industry. If, instead, T1’s
profit is over-estimated while T2’s is under-estimated (or vice versa), no such
additive error will occur. This fact—that anti-correlated errors are better than
correlated errors—is not captured when the defender’s loss is decomposable into
the sum of independent errors (when W is diagonal).
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Theorem 3. If W is any q × q matrix and C is the identity matrix (C = Id),
hr is bounded by V’s condition number κ(V) and its reciprocal.

1

κ(V)
≤ hr ≤ κ(V)

Proof. We aim to bound hr, which is defined in equation (27) and repeated
below:

hr =
Atkr.happ.(M,W,C)

Atkr.happ.(Mr,W,C)

Recall the definition of attacker happiness for linear models.

hr =
||VMG−1||2
||VMrG−1||2

(39)

Since C = Id, we have G−1 = Id.

hr =
||VM||2
||VMr||2

(40)

We first prove the upper bound on hr. By the submultiplicativity of the spectral
norm, we have:

||VM||2 ≤ ||V||2||M||2 (41)

By Corollary 11.6.6 of Bernstein [3],

σmin(V)σmax(Mr) ≤ σmax(VMr) (42)

By definition of spectral norm,

||VMr||2 ≥ σmin(V)||Mr||2 (43)

Combining equations (41) and (43), we have:

||VM||2
||VMr||2

≤ ||V||2||M||2
σmin(V)||Mr||2

(44)

Note that the definition of the condition number of a matrix A is:

κ(A) =
σmax(A)

σmin(A)

Hence, we have:

hr =
||VM||2
||VMr||2

(45)

≤ ||V||2||M||2
σmin(V)||Mr||2

(46)

=
σmax(V)||M||2
σmin(V)||Mr||2

(47)

= κ(V)
||M||2
||Mr||2

(48)
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Recall that ||M||2 = ||Mr||2 by equation (21). Therefore,

hr ≤ κ(V) (49)

which upper bounds hr as desired. □

We include the proof of the lower bound in Appendix A.2 for clarity. Note that
this proof closely parallels the proof of the upper bound with minor differences.

In Case 3, the defender is a linear learner that considers mean squared Ma-
halanobis norm with any W, i.e., it considers the general defender. When the
learner is constrained to rank r, the change in attacker happiness is bounded by
bounds that are independent of M and r.

4.5 Case 4. The general case

Cases 1, 2, and 3 all assume the presence of an ℓ2-bounded attacker, i.e., we
assume that C = Id. However, there may be scenarios in which C is some non-
identity, non-diagonal matrix. We now generalize to the case where, in addition
to W being any matrix W ∈ Rq×q, C is now any positive definite matrix
C ∈ Rd×d.

Running Example. In our running example, the attacker has limited ca-
pability to manipulate prices of various raw materials. Note, however, that these
prices are not the features that the learner uses to predict the companies’ prof-
its. Instead, the prices indirectly affect the features. As such, the attacker is not
constrained by an ℓ2 ball as in the classical setting. Because manipulating the
price of raw materials will have joint effects on the input features (the prices
of goods), the attacker is better modeled by being constrained by a general el-
lipsoid. For example, increasing the price of cloth may decrease the number of
aprons and shirts sold while simultaneously increasing the amount of laundry
detergent sold.

Theorem 4. If W ∈ Rq×q and C ∈ Rd×d, hr is bounded by the product of the
condition numbers of V and G and its reciprocal.

1

κ(V)κ(G)
≤ hr ≤ κ(V)κ(G)

Proof. We aim to bound hr, which is defined in (27) and repeated below:

hr =
Atkr.happ.(M,W,C)

Atkr.happ.(Mr,W,C)

Recall the definition of attacker happiness for linear models.

hr =
||VMG−1||2
||VMrG−1||2

(50)

We first prove the upper bound on hr. By the submultiplicativity of the spectral
norm, we have:

||VMG−1||2 ≤ ||V||2||M||2||G−1||2 (51)
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By Corollary 11.6.6 of Bernstein [3],

σmax(VMrG
−1) ≥ σmin(V)σmax(MrG

−1) (52)

and by Corollary 11.6.7 of Bernstein [3],

σmax(MrG
−1) ≥ σmax(Mr)σmin(G

−1) (53)

Combining (52) and (53), we have:

σmax(VMrG
−1) ≥ σmin(V)σmax(MrG

−1) (54)

≥ σmin(V)σmax(Mr)σmin(G
−1) (55)

By definition of spectral norm,

||VMrG
−1||2 ≥ σmin(V)||Mr||2σmin(G

−1) (56)

Putting (51) and (56) together, we have:

||VMG−1||2
||VMrG−1||2

≤ ||V||2||M||2||G−1||2
σmin(V)||Mr||2σmin(G−1)

(57)

Note that the condition number κ(A) is defined as σmax(A)
σmin(A) . Therefore:

hr =
||VMG−1||2
||VMrG−1||2

(58)

≤ ||V||2||M||2||G−1||2
σmin(V)||Mr||2σmin(G−1)

(59)

=
σmax(V)||M||2σmax(G

−1)

σmin(V)||Mr||2σmin(G−1)
(60)

= κ(V)
||M||2
||Mr||2

κ(G−1) (61)

(62)

For any invertible matrix A, κ(A) = κ(A−1). Recall that ||M||2 = ||Mr||2.
Therefore, we have:

hr =
||VMG−1||2
||VMrG−1||2

(63)

≤ κ(V)
||M||2
||Mr||2

κ(G−1) (64)

= κ(V)
||M||2
||Mr||2

κ(G) (65)

= κ(V)κ(G) (66)

Thus, we have
hr ≤ κ(V)κ(G) (67)

which upper bounds hr as desired. □
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We include the proof of the lower bound in Appendix A.3 for clarity. Note that
this proof closely parallels the proof of the upper bound with minor differences.

5 Discussion

In this paper we considered a series of scenarios—from the classical setting where
the defender minimizes MSE and the attacker is constrained by an ℓ2 bound to
the realistic setting where both defender and attacker use general Mahalanobis
metrics—and shed light on the effects of rank restrictions on adversarial robust-
ness for linear regression. We proved seven theoretical bounds on the change in
adversarial robustness for multi-target linear regressions when incorporating a
maximum rank constraint on the model.

These bounds provide a tool for practitioners making design decisions about
learners when adversaries are at play. In Cases 1, 3, and 4, the bounds are inde-
pendent of r. In Case 1, this is powerful—no matter what width r the defender
chooses, the defender knows that it will not affect the vulnerability of the model.
Hence, it is able to select the constraint on model rank solely based on model
performance (without risking a decrease in robustness).

In Cases 3 and 4, the defender only knows the maximum amount of change
that a rank constraint could cause on the vulnerability of the model. That is, no
matter what constraint the defender chooses, the upper bound on the change in
robustness remains the same value. We note that Theorems 3 and 4 are looser
bounds than 1 and 2. However, they are also the most general, as they apply
to any defender (and, in Case 4, any attacker). Only the bounds in Theorem 2
depend on the rank constraint—specifically, the upper (lower) bound decreases
(increases) as r approaches q. The more constrained the learner is, the more it
may affect the vulnerability of your model. Knowing these bounds allows the
defender to assess the implications of choosing a rank r on the vulnerability of
the model. In addition, these insights contribute to a deeper understanding of
how model compression techniques (e.g., distillation, weight pruning, or low-rank
approximation) may compromise robustness.

In addition, our presented bounds further illuminate the connection between
adversarial robustness and matrix spectra for linear models.

A defining characteristic of these bounds is their dependency on the singular
values of V. All four bounds are a function of the singular values of V, which
depends on W (where the defender loss is || · ||2W). That is, they are specific
to the defender and independent of the input x. In general, the possible change
in attacker happiness is defined by the range of the singular values of V.
For instance, in Case 2, if the largest singular value σ1(V) is far from the sec-
ond largest singular value σ2(V), i.e., W⊤W has a large spectral gap, simply
constraining the rank of the model to r = q − 1 can result in a large change in
attacker happiness.

Finally, our investigation highlights an important lesson regarding adversarial
learning. The classical setting is mathematically elegant and well studied, but is
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(a) unrealistic for a broad range of real-world tasks and (b) fails to capture the
full nuance of how design decisions affect model robustness.

6 Related Works

Deployment-time attacks against classifiers are often called "evasion" attacks
[20] and date back to Dalvi et al. [6] and Lowd and Meek [12]. One canonical
example is spam detection [13]. Here, an attacker aims to slip past the spam
filter of the defender by perturbing the original message so as to be classified
as legitimate by the defender. Such attacks against deep learning methods have
been extensively studied [4,7,5].

Deployment-time attacks against regression models, however, remain under-
studied. Grosshans et al. [8] consider attacks on regression methods under a dif-
ferent threat model, and use game-theoretic approaches to derive attacks. More
closely related to the work presented herein, Alfeld et al [1] develop deployment-
time attacks against autoregressive forecasters, where the attacker aims to per-
turb past values so as to change the defender’s forecast of the future. In later
work, the authors derive optimal defenses against linear models by efficiently
computing the optimal repulsive attack [2]. We utilize their notation and rely
on their Theorem 2 (defining the optimal attack) in our proofs.

Outside of adversarial contexts, there have been various methods of per-
forming multi-target linear regression. Filtered Canonical Y-variate Regression
(FICYREG) leverages canonical variates and canonical correlations to formulate
an optimization problem that forces the explicit learning of relationships between
targets [19]. Simila and Tikka [18] adds a regularization term that results in an
optimization problem equivalent to minimizing MSE subject to a sparsity con-
straint (i.e., by solving the ℓ2-SVS problem). Reduced-rank regression (RRR), is
a method that constrains the rank of the parameter matrix in the optimization
problem [11]. While the focus in this paper has been RRR, a promising avenue
for future work is to perform similar analysis of the adversarial robustness of
other multi-target regression methods.

Prior work has empirically demonstrated that reduced-rank models are often
less robust than their full-rank counterpart because the low-rank structure be-
tween the input features and targets is easily distorted by outliers in the data. As
such, a method of defense that specifically addresses this weakness for RRR was
proposed, in which sparse mean-shift parameterization is utilized during train-
ing [17]. Our work complements prior work by forming a theoretical foundation
supporting the observed empirical behaviors.

The robustness of reduced-rank models have also been studied in other con-
texts. As deep neural networks (DNNs) continue to grow in size (i.e., number
of parameters), the task of reducing training and inference costs has become in-
creasingly important. Model compression techniques, such as low-rank approxi-
mation, are commonly used to address this challenge. However, low-rank approx-
imation often degrades adversarial robustness. Savostianova et al. [16] analyzes
this trade-off by discussing robustness in terms of the local condition number of
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the DNN. In their threat model, the attacker is constrained to a perturbation
vector with norm ||α|| ≤ ϵ||x||, where ϵ ∈ R is a fixed small multiplicative fac-
tor. This threat model provides an alternative setting to which our work can be
applied and provides an interesting avenue for future work.

7 Conclusion

In this paper we derived seven theoretical bounds on the change in adversarial ro-
bustness for multi-target linear regression when incorporating a maximum rank
constraint on the model. These bounds are directly applicable by practitioners
and cover a range of common defender and attacker settings. The bounds and
their proofs lend insights into the connections between adversarial robustness
and the spectra of matrices defining defender loss (W) and attacker capability
(C). Most prominently, we find that in the classical setting (the learner mini-
mizes Mean Squared Error and the attacker is constrained by an ℓ2 constraint),
adversarial robustness is unaffected by rank reduction. Under more general and
practical settings, rank constraints can dramatically affect robustness, the extent
of which is bounded by a function of the eigenvalues of W. Through studying
reduced-rank regression, we strengthen a foundational understanding of the ad-
versarial robustness of low-rank models and highlight the importance of exam-
ining non-classical yet practically relevant adversarial settings.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

A Lower Bounds on Adversarial Robustness

A.1 Proof: Theorem 2 Lower Bound

Proof. By Proposition 11.6.4 of Bernstein [3], for i ∈ {1, ..., q},

σi(V)σmax(M) ≤ σi(VM) (68)

where σi(·) is the i-th largest singular value.
Since 1 ≤ r ≤ q, we have that 1 ≤ (q − r + 1) ≤ q. Hence, the following holds:

σq−r+1(V)σmax(M) ≤ σq−r+1(VM) (69)

By definition of the spectral norm, we have:

σq−r+1(V)||M||2 = σq−r+1(V)σmax(M) (70)
≤ σq−r+1(VM) (71)
≤ σmax(VM) (72)
= ||VM||2 (73)
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By the submultiplicativity of the spectral norm,

||VMr||2 ≤ ||V||2||Mr||2 (74)

Combining equations (73) and (74), we have:

hr =
||VM||2
||VMr||2

(75)

≥ σq−r+1(V)||M||2
||V||2||Mr||2

(76)

Recall that ||M||2 = ||Mr||2 by equation (21). Therefore,

hr ≥ σq−r+1(V)

||V||2
(77)

which lower bounds hr as desired. □

A.2 Proof: Theorem 3 Lower Bound

Proof. By Corollary 11.6.6 of Bernstein [3], we have:

σmin(V)σmax(M) ≤ σmax(VM) (78)

By the definition of spectral norm,

σmin(V)||M||2 ≤ ||VM||2 (79)

By the submultiplicativity of the spectral norm, we have:

||VMr||2 ≤ ||V||2||Mr||2 (80)

Combining equations (79) and (80), we have:

||VM||2
||VMr||2

≥ σmin(V)||M||2
||V||2||Mr||2

(81)

By definition of the condition number,

hr =
||VM||2
||VMr||2

(82)

≥ σmin(V)||M||2
||V||2||Mr||2

(83)

=
σmin(V)||M||2
σmax(V)||Mr||2

(84)

=
1

κ(V)

||M||2
||Mr||2

(85)

Recall that ||M||2 = ||Mr||2 by equation (21). Then,

hr ≥ 1

κ(V)
(86)

which lower bounds hr as desired. □
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A.3 Proof: Theorem 4 Lower Bound

Proof. By Corollary 11.6.6 of Bernstein [3],

σmax(VMG−1) ≥ σmin(V)σmax(MG−1) (87)

and by Corollary 11.6.7 of Bernstein [3],

σmax(MG−1) ≥ σmax(M)σmin(G
−1) (88)

Combining (87) and (88), we have:

σmax(VMG−1) ≥ σmin(V)σmax(MG−1) (89)

≥ σmin(V)σmax(M)σmin(G
−1) (90)

By definition of spectral norm,

||VMG−1||2 ≥ σmin(V)||M||2σmin(G
−1) (91)

By the submultiplicativity of the spectral norm,

||VMrG
−1||2 ≤ ||V||2||Mr||2||G−1||2 (92)

Putting (91) and (92) together, we have:

||VMG−1||2
||VMrG−1||2

≥ σmin(V)||M||2σmin(G
−1)

||V||2||Mr||2||G−1||2
(93)

By the definition of the spectral norm and the condition number κ(·):

hr =
||VMG−1||2
||VMrG−1||2

(94)

≥ σmin(V)||M||2σmin(G
−1)

||V||2||Mr||2||G−1||2
(95)

=
σmin(V)||M||2σmin(G

−1)

σmax(V)||Mr||2σmax(G−1)
(96)

=
||M||2

κ(V)||Mr||2κ(G−1)
(97)

(98)

For any invertible matrix A, κ(A) = κ(A−1). Recall that ||M||2 = ||Mr||2.
Therefore, we have:

hr =
||VMG−1||2
||VMrG−1||2

(99)

≥ 1

κ(V)

||M||2
||Mr||2

1

κ(G−1)
(100)

=
1

κ(V)

||M||2
||Mr||2

1

κ(G)
(101)

=
1

κ(V)κ(G)
(102)

which lower bounds hr as desired. □
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