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Abstract—Management and operation of the electrical grid
in the US is handled in large part by regional authorities called
Independent System Operators (ISO’s). One of the key activities of
an ISO is load forecasting which is critical to short-term energy
trading markets and effective operation of the power grid. In
this paper, we analyze load forecasts and develop methods for
improving forecasts that can be used directly by ISO’s or third
parties. Specifically, we assess the hourly electrical load forecasts
against actual load data provided by Midwest ISO over a two-
year period. Residual analysis shows systematic inaccuracies in
hourly forecasts that can be caused by a variety of factors
including modeling errors and pumped storage in the grid. We
utilize machine learning-based methods to improve forecasts over
short time horizons. Our methods reduce the mean squared error
of forecasts over the entire year by roughly 20%. By shortening
the forecast horizon to 1 to 32 hours, we are able to improve by
over 90%. These improvements can be important in operational
energy market contexts, where even small differences in forecasts
can lead to large swings in transmission behavior and market
activity.

I. INTRODUCTION

The electrical power system in the US is extremely large
and complex. At the highest level, it is composed of diverse
power generation facilities, transmission (typically overhead)
and transformer infrastructure, and a wide range of power
consumers. The key objective of the system is to ensure that
power supply is sufficient to match demand at any point in
time. The main challenges in meeting this objective include the
enormous scale of the infrastructure, inherent dynamics and
variabilities, and limitations in generation and transmission
capabilities.

To address these challenges and help ensure the ready
availability of power for the public, the US Federal Energy
Regulatory Commission (FERC, which is under the aegis of
the US Department of Energy) has established a series of
regional organizations that oversee and coordinate activities
within the electrical power system. One of the most important
aspects of these Regional Transmission Organizations (RTOs)
and Independent System Operators (ISOs) is their adminis-
tration of a region’s wholesale electricity market for buying,
selling and trading power. A key element of that activity
is load forecasting. Accurate forecasts are critical for both
operations and effective market participation.

Electric load forecasts are produced by ISOs using propri-
etary models with diverse inputs that include direct projections

of power needs from large consumers (e.g., factories or large
buildings), weather forecasts, and historical demand among
others. Forecasts are generated at a variety of time horizons
ranging from forecasting load over the next hour, to estimating
annual trends. Forecast load data along with actual hourly load
data is openly available from ISOs.

In this paper, we analyze the accuracy of load forecasts
produced by the US Midwest ISO (MISO) over a two year
period from 2010 and 2011. The goals of our work are to (i)
understand the accuracy of the forecasts, (ii) infer any causes
for systematic inaccuracies and (iii) improve the accuracy of
the forecasts. The primary challenge in our work is that ISOs
do not publish the inputs to their forecasting model nor do
they disclose any of the details of the model itself. Thus, we
are left with only the outputs of the model and actual load
values as the basis for our work.

We begin by conducting a residual analysis of forecast
versus actual loads. Our results reveal a variety of differ-
ences between the two data sets, with forecasts typically
underestimating actual load. Over longer time scales, we
observe seasonal transitions in residuals. Over shorter time
scales, we observe that most of the residual errors are early
hours of the day (i.e., between 1:00am and 4:00am). These
results and further investigation of MISO’s methods lead to
our identification of three general sources of error: deliberate
distortion, forecast horizon and inherent model error.

Based on these error sources, we develop methods to model
and reduce errors in forecasts. Our approach uses a variant
of stacked generalization that is adapted for our application.
Specifically, we develop linear models which we use to aug-
ment existing forecasts from a blackbox model. We then show
that for each of the three error sources, our methods improve
forecasts. In particular, our methods are able to improve
forecasts during times of deliberate distortion (e.g., due to
pumped storage activities) and for shorter forecast horizons,
reducing the error by over 90% in some instances. Our models
can be directly plugged into existing models during some
times of the day, reducing the error by 10% to 35% for early
morning daytime hours. Our methods of analysis can be used
for decision support as well, indicating times of day and year
where existing models can be potentially be improved.



II. RELATED WORK

Inaccurate load forecasts lead to various difficulties. Indi-
vidual entities which consume large amounts of electricity,
such as paper mills and data centers, are often legally re-
quired to provide load forecasts to utility companies [18].
In addition, Independent System Operators (ISO’s) and Re-
gional Transmission Organizations (RTOs) which govern the
electricity markets, flow, and generation, must forecast future
load. The load forecasts must be accurate to plan the electric
dispatch of power plants and ensure stability, reliability, and
efficiency [18].

Should the forecast underestimate the actual load, scheduled
generation resources may not be sufficient to ensure system
reliability. To meet the additional demand (beyond what was
forecast), less efficient and more costly generation methods
must be used or additional power must be purchased [13]. If
instead the forecast underestimates the actual load, generation
may have been committed, resulting in unnecessary fuel and
maintenance costs. Power may have been unnecessarily pur-
chased, and relative prices may have been set too high [13].
For analyses of the effects of load forecast accuracy, see [1],
[11], [20] and references therein. To the best of our knowledge,
there is no publicly available assessment of the ramifications
(economic or otherwise) of the load forecast data used in this
work [23].

Historically, statistical methods such as multiple linear
regression, stochastic time series, general exponential smooth-
ing, as well as state-space and knowledge-based methods,
have been used to predict future hourly load [19]. Starting
in the 1980’s, Artificial Neural Networks (ANNs) have been
evaluated for use in load forecasting [10]. While it was seen by
some as potentially a passing fad in the 1990’s [8], by the early
2000’s ANNs were widely adopted in load forecasting [12].

ANNs gain some performance improvements over other
methods because they are able to detect and account for
non-linear relationships between inputs. Today, the prevalence
of ANNs continues and many variations and extensions are
being explored actively. MISO, as well as e.g., California ISO
both use ANNs in their load forecasting'. Some examples of
extensions being explored in the academic community include
combining the wavelet transform with ANNs [5], [24], [22]
and Particle Swarm Optimization (PSO) [3].

III. ELECTRICITY ECOSYSTEM

Historically in the USA, vertically integrated electric utili-
ties provided power. In 1996, The Federal Energy Regulatory
Commission (FERC) issued orders 888 and 889 which opened
the doors for competition to the USA’s wholesale electricity
market, and brought transparency by requiring an open access
same-time information system (OASIS) for current operating
status and transmission capacities. In 1998 several transmis-
sion owners voluntarily came together to establish the not-for-
profit company Midwest ISO (MISO). In December of 2001,
FERC approved MISO as the first Regional Transmission
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Organization in the USA. Today, MISO manages over 175 GW
of generation capacity, with over 65,000 miles of transmission
lines spanning 15 U.S. States and parts of Canada.

Load-serving entities and load-balancing authorities sub-
mit their own, local, load forecasts to MISO. The details
of this arrangement are found in [18]. MISO incorporates
these forecasts, along with other data sources, to create its
own load forecasts. The internal workings of MISO’s load
forecast model, and the data used as input, are proprietary,
and unavailable to the public and market participants. It is
known, however, that MISO uses an artificial neural network
with weather being a primary component [23], [18].

In addition to managing the power grid, MISO also serves as
a moderator (much like an auctioneer in a traditional auction)
in two wholesale electricity markets. In one of these, the
day-ahead market, the price of electricity changes every hour
and prices are broadcast for the following day. The annual
gross market charges for 2011 were over $23 billion. Detailed
descriptions of these markets are found in [15], [16], [17]. The
real-time load is a key contributor to the rapidly changing price
of electricity.

IV. RESIDUAL ANALYSIS

MISO provides midterm load forecasts (MTLF) as well as
actual load data for three regions: West, Central, and East.
This data is publicly available? as the load (in MW) for each
hour of each day. MISO uses load forecasts for Reliability
Assessment Commitment, Market Participant Estimation of
Operating Reserve Obligations, Real Time 5 Minute Dispatch
and Look Ahead Commitment Processes. Details of these uses
are found in [18]. As described in more detail below, we used
total aggregate load (West + Central + East) for the years 2010
and 2011. We chose to analyze the total load in part because
taking the sum of the three regions should help reduce random
noise.

We examine how the error of the MTLF behaves as a
function of time by looking at the following two measures:

1) Cumulative Error:
=1y (My— Ly).
2) Cumulative Absolute Error:
ap = Y5, | My — Ly
where L; is the actual load at time ¢ and M; is the predicted
load (the MTLF) at time ¢. In addition, we consider aggregate
statistics as well as the raw signal of errors over time (see
Figure 1(a)).

We focus our attention on 2011, noting several features
of the errors. The presence of these features is validated by
observing similar phenomena in 2010.

First and foremost, we see definite structure, indicating
that there is room for model improvement. Second, both the
histogram and the cumulative error (upper right and lower left
of Figure 1(a), respectively) indicate that the MTLF tends to
underestimate the actual load.

Finally, we note the apparent presence of events occurring
where the pattern of errors changes. In the cumulative error

2(https://www.midwestiso.org/LIBRARY/Pages/Library.aspx)
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Fig. 1: Midterm Load Forecast Errors over all of 2010. (a): Upper Left: The raw errors, as defined by M, — L; over the course

of the year. Upper Right: A histogram of the raw error values. Lower Left: The cumulative error (¢; = Zle (M — Ly)).
Lower Right: The cumulative absolute error ((a; = Z§=1 |M; — L¢]). (b): Cumulative error by hour. Each line
represents a single hour of the day. (c): Cumulative absolute error by hour. Each line represents a single hour of the

day.



(lower left) we see a stabilization (the slope becomes close
to zero) from around hour 1100 to roughly hour 2000 (mid
February to late March), and again from hour 6000 to hour
7500 (early September to early November). In the cumulative
absolute error curve (lower right), we see two pronounced
bends. The slope, representative of the average absolute error,
is relatively low from the start of the year to roughly hour 3500
(late May). The slope is then high until roughly hour 6000
(early September), before returning back to its more shallow
behavior. This behavior follows the intuition of the total load
(and thus expected error) being higher in the warmer months
and lower in the colder months. The sharp changes, however,
may indicate an artifact of MISO’s forecasting model.

In a method similar to that used to define the LMP land-
scape [2], we split the year into 24 segments. We have one
segment for each hour of the day, and each segment consists
of 365 single-hour periods. Figures 1(b) and 1(c) show the
two errors functions for 2011.

Consider Figure 1(b)—the cumulative sum of errors. Each
hour of the day is represented by a single line, with the hour
marked on the right. Hour ¢ corresponds to the hour from 7
to 7 4+ 1 in a O-based 24-hour clock. The hour from 3:00AM
to 4:00AM (i = 3) has the most negative cumulative error, as
well as the highest cumulative absolute error. The maximum
errors at the right end of the horizontal scale correspond to
the hours of the day in the order indicated in Table I.

We now consider Figure 1(c). Recall the previously de-
scribed two bends as shown in Figure 1(a). When we split the
error values into individual hours, we observe that a subset of
hours exhibit only the first bend, while another subset exhibit
only the second and some exhibit both. We believe that these
bending points, as well as the behavior of individual hours of
the day with respect to them, can be explained by artifacts of
the underlying prediction model in combination with natural
events (e.g., the changing of the seasons).

V. SOURCES OF ERROR

In this paper, we identify three sources of error in the MTLF
and develop methods to analzye and remedy each.

Deliberate Distortions: MISO does not publish the ac-
tual predictions it generates internally. The publicly available
MTLF is actually an edited version of MISO’s original pre-
dictions. The published predictions include alterations due to
the use of pumped storage (pumping water up-river to store
electricity) in the grid [18].

Forecast Horizon: The horizon of a forecast is how far in
to the future predictions are made. Each day at 4:00PM, MISO
forecasts from midnight to midnight of the following day. This
yields a forecast horizon of 32 hours. In general, forecasting a
few hours ahead is more accurate than forecasting many hours
ahead.

Model Errors: Due to noise and unpredictable circum-
stances, no model can be completely accurate. We assume
that the underlying model used for forecasting is not perfect,
and that its deficiencies can be corrected to a degree. Note
that this is the most difficult source of error to account for.

Our methods for detecting and adjusting for the first two
sources of error are geared towards helping those outside of
MISO. If a user aims to forecast actual electricity usage from
MISO’s publicly available data, our methods for dealing with
deliberate distortions yield more accurate results than taking
MISO’s MTLF at face value. If, instead, a user aims to forecast
a short (less than 32 hours) time into the future, our methods
for addressing the forecast horizon can be helpful.

For the third source of error (model errors), our models and
analyses lend aid directly to MISO in three distinct ways.

1) A direct plugin:

Our models may be plugged in directly to improve the
accuracy of MISO’s predictions. Details of applying our
system are found in Section VII.

2) Decision support:

Our methods yield new predictions. Targeted resid-
ual analysis of these predictions, in combination with
MISO’s original forecasts, yield insights as to how
MISO’s model may be improved.

3) Further data acquisition:

By incorporating additional sources of data that may or

may not be considered by MISO, we may improve their

results, which would indicate that their model should be

updated with this data. This area is left as future work.
VI. MODELING METHODOLOGY

It is important to note that we do not model actual load. That
is to say that, unlike other work, we are not directly predicting
future load. Instead, we explicitly model the discrepancy
between the underlying forecast model and the observed load.
Using a variant of stacked generalization [26], we use our
model to augment the output from the underlying forecast
model.

The fact that we model the MTLF’s error (specifically the
ratio of the actual load over the predicted load) leads to the
following phenomenon. Suppose the actual load is 90MWh
and the predicted value (MTLF) is 100MHh. This means that
the target value for our system is 90/100 = 0.9. However, if
our system predicts a ratio anywhere in the range (0.8,1.0),
then the predicted load will be in the range (80, 100) and thus
a more accurate (in terms of absolute deviation) prediction
than the original 100. We conjecture that one can, in a method
similar to e-insensitive support vector regression, incorporate
knowledge of this “butter zone” into the loss function of
machine learning algorithms to improve predictions. This is
left as future work.

We applied this process and modeled the ratio between
the true load and the forecast. We begin with the following
notation.

e L;, the actual load at time t.

o M, the predicted (MTLF) load at time ¢.

e R;, the ratio at time ¢.

o Ry, our model’s predicted ratio at time t.

. Pt, our model’s prediction of the load at time ¢.

To model the discrepancy between MISO’s model and reality,
we let Ry = ]\LTi After learning a predictive model of R, we
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TABLE I: Hour Error Rankings. On the left end of the rankings (Rank 1), we have the hour with maximal cumulative
absolute error, and most extreme (most negative) cumulative raw error. Rank 24 corresponds to the hours with
minimal absolute error, and maximal (closest to zero) raw error. Hour ¢ is the hour from 4:00 to (¢ + 1):00 on a

24-hour clock.

produce our final predictions as Pt = Rt x M;.

For the results presented in this work, we performed predic-
tion via a sliding-window scheme [7]. We chose to model the
ratios as a function of the previous d ratios, where we refer
to d as the Markov factor, in addition to several exogenous
variables. We chose d = 168 (the number of hours in a week)
based on preliminary testing with 2010 data.

We experimented with a variety of models including e-
insensitive Support Vector Regression (SVR) with polynomial,
sigmoid, and radial basis function kernels [4], [6]. We also
tried & Nearest Neighbor (kNN) Regression with a variety
of k, and the Holt-Winters [25] algorithm. We compared
algorithms based on the mean squared error over all hours
in 2010. SVR proved most accurate when emulating MISO’s
prediction process, and Linear Regression proved best for
shorter horizon times (discussed below).

We tried several exogenous variables for predicting R;.

o The past 24 hourly temperatures (from ¢ — 25 to t — 1)
for the five most populous cities in MISO’s footprint:
Chicago, Detroit, Milwaukee, Indianapolis, and Colom-
bus.3

The current (at time ) hour of day (from O to 24).

The current (at time t) day of week (from O to 6).

The past 24 or 168 hourly MTLF values.

Temperature features proved universally unhelpful. We con-
jecture that this is due to the complex relationship between
weather and electricity usage and any benefit from incor-
porating the additional data was outweighed by the noise
introduced. The model used for the results presented here used
the hour of day, day of week, and past 168 MTLF values, based
again on results for 2010 data.

We standardized the data as a preprocessing step. In general,
this is done by rescaling values to be in the range [0,1]. We
chose to rescale values over an entire year, based on prelimi-
nary testing and standard practice in time series analysis. Note,
however, that at the beginning of e.g., 2011, the maximum
and minimum values over the year are unknown. Therefore,
to maintain the legitimacy of our predicting procedure, we
rescaled the values 2011 based on the extreme values found
in 2010.

We tuned the SVR hyperparameters via a grid-based coor-
dinate descent method on 2010 data. The best results were
obtained by using an rbf kernel with penalization parameter
C = 0.01, a value of ¢ = 0.01 (regarding e-insensitivity) and
v = 0.01.

3Data obtained from www.wunderground.com.

We used the Python library Scikit-Learn vO0.14.1 [21].
Plots presented in this work were created using Matplotlib
v1.3.0 [14].

To emulate MISQO’s prediction process, at 4:00pm every day
we forecast the following day. Using a sliding window scheme,
we first predict R; one hour ahead, and then feed it as a feature
to our model and predict one hour later.* We continue until
we have produced 32 ratio predictions (8 hours until midnight,
then 24 for the following day). The pre-forecast hours (from
4:00pm to midnight) are then discarded, and we multiply with
our ratios to obtain the 24 Pt’s.

An alternative approach, sometimes used in load forecast-
ing, is to maintain separate models for separate hours of the
day.

Note that the 24-model approach may have suffered due
to a lack of training data compared to the sliding window.
Because individual models predict only one hour of the day,
a maximum number of training points for a year is 365. In
the sliding window method, however, a typical year contains
365 x 24 = 8760 training points.

In addition, the 24-model approach assumes independence
among hours of the day. In the sliding window scheme, early
predictions may affect later predictions because they are fed
back in as features. This allows some encoding of dependence
when predicting several hours at a time.

With the goal of decision support in mind, we maintained
a consistent training time, training a new model for each set
of predictions. That is to say that for day n, we train a single
model on days (n —1,n—2,...) and predict all 24 values for
day n. To forecast day n + 1, we train a new model using the
same amount of training data, but now ending at day n. The
results presented here use a training time of 7" = 4032 hours
(24 weeks or approximately six months) and a Markov factor
of d = 168 hours (one week). All evaluations presented were
done by predicting all of 2011. When necessary, part of 2010
was trained on.

VII. RESULTS

In training our models we aimed to minimize Mean Squared
Error (MSE). Note that we minimized the MSE of the ratios,
not the MSE of the final load predictions. We then generated
predictions for every hour of 2011 as described above. We
calculated the error of our model, as well as that of the MTLEF.
The error functions we used are:

4We tested a 24-model (one for each hour of the day) approach on the
2010 data. To predict a full day’s load, we queried each model separately
and concatenated their responses. Using a sliding window outperformed the
24-model approach, and thus it is what we used for the results presented in
this work.



1) Mean SquarAed Error (MSE):
5 (Lo — P
2) Mean Absolgte Difference (MAD):
% Et ILt — B t|~
3) Median Absolute Difference (MED):
argmin, | [L; — P,| — v|.
Here, n is the number of times predicted and the MTLF errors
are calculated with M; in place of Pt.

We list each of the three error functions due to their
qualitative differences. MSE is more sensitive to few large
errors than to many small errors, while MAD has no such
bias. MISO has indicated that improving MSE is a worthwhile
goal [23]. While perhaps less intuitive, MED provides a more
robust measure of error.

We then computed the ratio of our augmented prediction’s
error to the MTLF error. A high (above 1.0) ratio means
our new predictions do worse than the MTLF; a low ratio
(below 1.0) means our methods are improving the forecast
performance.

A. Deliberate Distortion.

Our method of improving forecasts is agnostic to what
errors are resulting from model error, and what errors are de-
liberate distortions. We apply domain knowledge to distinguish
the two when analyzing the behavior of our approach.

We simulated MISO’s forecasting procedure, predicting
from midnight to midnight at 4:00PM on the preceding day.
Over the entire year of 2011, we obtained ~ .80 MISO’s
MTLF MSE, =~ .85 their MAD, and =~ .79 their MED.
Note that therefore, as a direct plug in, we improve on the
MTLF’s accuracy by comparable amounts in each of the three
measures. If instead we improved with respect to MSE, but
made no improvement on MAD or MED, it would indicate that
we reduced peak errors, but made less general improvement.

Recall that the publicly available MTLF values provided by
MISO are not their actual predicted values [18]. MTLF values
include alterations due to pumped storage. MISO domain
experts have told us that these alterations occur between
10:00PM and 6:00AM [23]. Using this knowledge, we split
the 24-hour day into nighttime hours (10:00PM to 6:00AM)
and daytime hours (6:00AM to 10:00PM).

Nighttime | Daytime
MSE Ratio 441 1.062
MAD Ratio 611 1.042
MED Ratio 517 1.050

We do slightly worse than the original MTLF during the
daytime hours and substantially better during the nighttime
hours. Intuitively, this makes sense because the daytime errors
are due to model errors as opposed to deliberate distortions.
In summary, in predicting nighttime hours, our method yields
=~ .44 the MTLF’s MSE averaged over the year (and ~ .61
the MAD, ~ .52 the MED). In predicting daytime hours,
further efforts are needed (as described in subsection VII-C)
to improve accuracy beyond that of the original MTLFE.
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Fig. 2: Relative daytime error as a function of forecast
horizon. The vertical axis represents the ratio of
our method’s error to the MTLF error. We consider
Mean Squared Error (MSE), Mean Absolute Differ-
ence (MAD), and Median error (MED).

B. Forecast Horizon.

Forecasting load with a short (less than 32 hours) horizon
is beneficial when participating in the wholesale electricity
markets. For horizons h = 1,...,32, we predicted load
values for 2011. As before, we experimented with a variety of
methods including SVR and linear regression. For the results
presented here, we used linear regression, which outperformed
the other methods based on mean squared error of daytime
hours on 2010 data. As before, d = 168, however the
exogenous variables included only the past 24 hours of the
MTLF values.

Recall that MISO predicts for 8 to 32 hours ahead (midnight
to midnight the following day at 4:00PM). In our evaluation
process, we simulated training one model per day, updating
the training set each time. For example, when h = 2, we train
a model, use it to make 24/2 = 12 predictions (totaling 24
predicted hours) and then retrain it using the additional day.
Note that our models are trained on the original (deliberately
distorted) data.

Because we are focused on the forecast horizon, and not
deliberate distortions, we measure our improvements only con-
sidering the daytime hours. Figure 2 shows the performance of
our forecasts relative to the MTLF. Several observations leap
out.

First, note that even at as high as 30 hours, we outperform
MISO’s forecasts. This is due to the pre-forecast time of
MISO’s forecasting procedure. Suppose it is 4:00PM and we
provide predictions for the next 30 hours. These 30 hours will
include the 24 hour period that MISO is predicting (from



midnight to midnight). However, for the pre-forecast hours,
from 4:00PM to midnight, we have an advantage over MISO.
While MISO produced these forecasts a full 24 hours ago, we
are able to forecast them right now, using all of today’s most
recent data. For this reason, we improve on MISO’s predictions
even with such lengthy forecast horizons.

Second, there is a pronounced spike at A = 24 hours (see
Figure 2). We posit that this is due to the following. With
a horizon of 24 hours, we predict a full day, every day, at
midnight. Because MISO made the predictions at 4:00PM
on the previous day, we have an advantage. For example,
while MISO predicted noon 20 hours before it occurred, we
predicted it only 12 hours ahead. However, over the course of
the year this advantage is constant, i.e., we are always using
8 additional hours of data than MISO had.

Consider the 8 hour advantage when predicting 1 hour ahead
instead of 9. As shown by Figure 2, this is a greater advantage
than that seen when predicting, e.g., 20 hours head instead of
12. Because the early morning hours (midnight to 6:00AM)
are not counted in our analysis, the 8 hour advantage of the
h = 24 model is largely lost.

With the other horizon times, we still have an advantage
over the MTLEF, but the advantage is not static. With a horizon
time of h = 23 for example, our first set of predictions is from
midnight to 11:00PM. As before, this gives us an advantage
of 8 hours. However, as the prediction process continues,
we sometimes obtain a very good advantage (for example
predicting 1 hour ahead when MISO predicts 8 hours ahead)
that we never see in the h = 24 model. We conjecture’ that
this syncing up is the cause of the anomaly at h = 24.

To account for the inherent advantage of having no pre-
forecast time, we ran an additional set of experiments. Here,
for a horizon time of h = 1...24, we compared our results
to the MTLE. For each horizon time, we also included a pre-
forecast time of 8 hours. That is to say that we forecast a full
h + 8 hours ahead in a sliding-window scheme, and drop the
first 8 predictions.

The results are not as clean as in the previous case.
Recall that our approach to identify and account for deliberate
distortions (which is faithful to MISO’s prediction procedure)
uses a horizon of h = 24. With the inclusion of an §-hour
pre-forecast time, we only see improvement when h is very
low (h < 6). Even with such a low h, we never see any
improvement in terms of MED. This indicates that the pre-
forecasting time is a large part of why shortening the forecast
horizon produces more accurate forecasts (recall that without
the pre-forecast time, the relative MSE, for example is less
than 0.1 when h = 1).

C. Model Errors.

The ratio of our predictions’ MSE to the MTLF’s MSE,
when considering all daytime hours of the year, is 1.06,
meaning ours is roughly 6% worse than MISO’s. The ratio

5To verify this hypothesis, we tested up to h = 60 and found (as expected)
a similar, albeit it less pronounced, spike at h = 48.
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Fig. 3: Relative error by hour of day. The horizontal axis
is the hour of day in a 0-based 24-hour clock. The
vertical axis represents the ratio of our error to the
MTLF error.

for mean absolute difference is 1.04 and 1.05 for median
absolute difference. As discussed previously, correcting for
model errors is the most difficult task. However, with targeted
residual analysis we are able to pinpoint when our approach
does aid MISO. As we did previously, we split the year into
24 segments and analyze errors.

Figure 3 shows our relative performance across 2011 for
each hour of the day. As described above, we reduce the
errors during the nighttime hours (where deliberate distortion
is taking place). However, note that between 6:00AM and
7:00AM we are yielding roughly .65 the MTLF MSE. In
addition, between 7:00AM and 8:00AM we yield ~ .90 the
error. This indicates that our system improves on the MTLF
beyond accounting for deliberate distortions. Implementing
our system as a direct plug-in would help during early morning
daytime hours.

VIII. CONCLUSIONS AND FUTURE WORK

Effective operation of the US power grid depends, among
other things, on the ability to match supply with demand
in real time. To accomplish this, regional power authorities
forecast hourly demand on a day ahead basis. These forecasts
enable power generation and transmission infrastructures to be
configured to meet demand and for power brokers to estimate
pricing appropriately. Accurate load forecasts depend on a
range of issues — most significantly the weather — and while
the details of models used by ISO’s are proprietary, both
projections and actual loads are publicly available.

In this paper, we examine the accuracy of power load fore-
casts that were made over a two year period by US Midwest
ISO. The goal of our work is to understand the details of errors



in forecasts and to develop practical methods for improving
forecasts. Examination of differences between forecast and
actual loads immediately reveals both longer term seasonal
effects as well as diel patterns that suggest three models
for sources of errors: deliberate distortions, extended forecast
horizons and inherent model deficiencies. To investigate these
models and toward our goal of developing methods that can
improve forecasts, we develop learning-based methods that
seek to minimize forecast error. We demonstrate our methods
in the context of our error models to show where and how
they can improve forecasts. Specifically we show that we can
reduce the mean squared error of exisiting forecasts by over
90% by reducing the forcast horizon. In addition, by detecting
and addressing the deliberate distortions of load forecasts, we
reduce the mean squared error by roughly 20% over the course
of the year and by over 55% for nighttime hours. It is important
to note that our method can be immediately applied to load
forecasts produced by MISO or other ISO’s without requiring
details of their models or inputs — we only require historical
forecasts and load values.

While we believe that our residual-based methods can be
immediately useful in practice, we also find that there are
many additional opportunities to improve load forecasting.
In general, the ranking and relative performance of different
models depends on the residuals evaluated (c.f., [9]). Further
investigation using a variety of residual formulations may yield
additional information useful for decision support. We used
only publicly available forecast and load data and had no
information about forecast models for this work. While we
considered this a practical approach, access to all inputs along
with concrete knowledge of the underlying model, will likely
yield further improvements from our system. In addition, recall
that instead of modeling actual load, we explictly model the
MTLF’s error. This leads to the phenomenom of a “butter
zone” we discussed, where only predictions outside a certain
range result in a worse final prediction. In a method similar
to e-insenstive support vector regression, one can incorporate
knowledge of the “butter zone” into the loss function of a
machine learning algorithm to improve predictions. Finally, we
are in the process of considering various ways in which we can
expand our model to include additional data sets directly, such
as highly targeted weather forecasts. We believe that inclusion
of additional input can help to make our model more sensitive
to meaningful variations in actual loads that are not currently
captured in forecasting models.
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PREDICT Project. Any opinions, findings, conclusions or
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