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ABSTRACT
We present RAWLSNET, a system for altering Bayesian Network
(BN) models to satisfy the Rawlsian principle of fair equality of
opportunity (FEO). RAWLSNET’s BN models generate aspirational
data distributions: data generated to reflect an ideally fair, FEO-
satisfying society. FEO states that everyone with the same talent
and willingness to use it should have the same chance of achiev-
ing advantageous social positions (e.g., employment), regardless of
their background circumstances (e.g., socioeconomic status). Satis-
fying FEO requires alterations to social structures such as school
assignments. Our paper describes RAWLSNET, a method which takes
as input a BN representation of an FEO application and alters the
BN’s parameters so as to satisfy FEO when possible, and minimize
deviation from FEO otherwise. We also offer guidance for applying
RAWLSNET, including on recognizing proper applications of FEO.We
demonstrate the use of RAWLSNET with publicly available data sets.
RAWLSNET’s altered BNs offer the novel capability of generating
aspirational data for FEO-relevant tasks. Aspirational data are free
from biases of real-world data, and thus are useful for recognizing
and detecting sources of unfairness in machine learning algorithms
besides biased data.

CCS CONCEPTS
• Mathematics of computing → Bayesian networks; • Com-
puting methodologies → Bayesian network models; • Ap-
plied computing → Sociology.
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Rawlsian fair equality of opportunity, Bayesian networks, aspira-
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1 INTRODUCTION
Machine learning algorithms often display pernicious biases that
lead to harmful and unfair outcomes for marginalized groups [4, 9,
15, 17, 38, 39]. In response to this algorithmic bias, there is a widely
growing literature seeking to achieve fairness in machine learning
[3, 25, 40]. As a guide to fairness, we appeal to John Rawls’ theory
of justice as fairness [42, 43]. For a society to be fair in the Rawlsian
sense, it must satisfy a substantive equality of opportunity principle,
which Rawls calls fair equality of opportunity (FEO). This principle
governs fair decision-making in the context of distributing desir-
able social positions (such as employment) in society. Specifically,
it requires that all people who have the same level of talent and
ambition have the same chance of attaining advantageous social
positions. We address the following question: Given an unfair (in
the Rawlsian sense) outcome and the capability to alter some (but
not all) decision-making processes, how can one satisfy FEO? To this
end, we use Bayesian Networks (BNs) to model decisions that are
governed by FEO — namely, those that impact the distribution of ad-
vantageous social positions. We then give a characterization of FEO
in terms of conditional probabilities, which allows for the mathe-
matical formalization of the above problem. Specifically, we present
RAWLSNET. Given data, RAWLSNET offers guidance on making deci-
sions that satisfy FEO. When satisfying FEO is impossible (e.g., due
to resource constraints such as number of available jobs), RAWLSNET
finds the “closest” solution to satisfying FEO. See Section 3 for
details on “closest.”

RAWLSNET has the following three components: (1) learn a BN; (2)
determine relevance to FEO; (3) update parameters of the learned
BN to satisfy FEO if possible. Otherwise, update the parameters to
approximately satisfy FEO. To learn the BN, RAWLSNET accepts as
input (i) a fully trained Bayesian Network (BN), or (ii) the structure
of a BN and data to learn the BN’s parameters (i.e., probabilities in
its conditional probability tables – a.k.a. CPTs), or (iii) data to learn
the BN’s structure and its parameters. If RAWLSNET has to learn the
BN structure, it asks the user to answer a series of queries:
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Sensitive 
Variable Other Variables

SES P

Low 0.8

High 0.2

Talent P

Low 0.5

High 0.5

Test SES Talent P

High Low Low 0.1

High Low High 0.9

High High Low 0.25

High High High 0.95

College SES Test P

Yes Low Low Variable

Yes Low High Variable

Yes High Low 0.1 
(Fixed)

Yes High High 0.85 
(Fixed)

Job SES College P

Yes Low No 0.1

Yes Low Yes 0.9

Yes High No 0.25

Yes High Yes 0.95

Justified 
VariableLegend Target Variable

Figure 1: Running example of a Bayesian Network for college admissions. The Talent variable refers to having the innate
capability to succeed at a job. The Socioeconomic Status (SES) variable represents socioeconomic status (e.g., an individual
with a high SES is often wealthy). The Test variable refers to GPA and entrance exam results. The College variable stands
for admissions into college and is highlighted in the conditional probability tables (CPTs) to indicate that it represents the
decision being modeled. Job refers to whether the individual attained desirable employment. Note: For brevity, the CPTs for
Test, College, and Job only contain the probabilities for when these values are one.

• Identify variables that morally justify unequal decisions (e.g.,
talent, ambition)

• Identify variables that are sensitive and do not justify un-
equal decisions (e.g., gender, socioeconomic status, race, etc).

• Identify variables over which you have control (e.g., college
admissions).

• Identify the variable that represents a socially advantageous
position (e.g., job)

• Identify variables in your datawhich you believe RAWLSNET
should ignore.

To illustrate the method and purpose of RAWLSNET, we present
a running example and discuss two uses of RAWLSNET: generating
aspirational data and providing policy-advice to domain experts.

1.0.1 A running example. To illustrate FEO and RAWLSNET we use
the following running example in the domain of education. We
consider people applying for a job, where each applicant is born
with a certain degree of talent and a certain socioeconomic status
(SES). Subsequently, applicants achieve a certain secondary GPA
and take college entrance exams. On the basis of these exam scores
(including GPA) and their SES, applicants have a certain proba-
bility of getting into a prestigious college. After graduation, each
applicant’s college experience and SES determine how likely it is
that he/she obtains a good job. We imagine that the initial situa-
tion, prior to RAWLSNET’s intervention, reflects certain unjustified
advantages for those with high SES. As is plausibly true for modern
societies, high SES has an impact on test scores, college acceptance,
and employment. Most relevantly, applicants with high SES have a
better chance of achieving a good job than similarly talented people

with low SES. This situation is a violation of FEO. In order to satisfy
FEO, whether or not an applicant is given a job must be indepen-
dent of the applicant’s SES, given their talent. For exposition, we
model all variables as binary and include only a single sensitive
feature (which is SES), but note that neither of these limitations are
necessary. Figure 1 shows the BN for our running example.

We consider the task of a hypothetical college admissions com-
mittee as they decide who is/isn’t accepted into college based on
the test scores and SES of potential applicants. Its goal is to achieve
FEO, which we note is a consideration at the hiring level, not the
college admittance level. By altering the probabilities of accepting
low-SES applicants (based on their test scores), the college admis-
sions committee can provide an advantage to low-SES applicants.
This advantage can counteract the unfair benefits of high-SES stu-
dents that directly influence both their test scores and job placement.
RAWLSNET sets the probabilities 𝑃 (𝐶𝑜𝑙𝑙𝑒𝑔𝑒 |𝑆𝐸𝑆,𝑇𝑒𝑠𝑡) such that FEO
is satisfied.

1.0.2 Aspirational data. RAWLSNET can be used to generate syn-
thetic datasets that model ideally fair circumstances (a.k.a. aspira-
tional data). Such data can be sampled from the FEO-satisfying BN
models generated by RAWLSNET, and subsequently used to aid in
research on algorithmic bias by shifting the focus towards sources
of bias introduced downstream in the machine-learning life cycle,
such as training and deployment processes. By evaluating data
analysis methods on aspirational data, one can determine whether
or not “bad data” is the only factor to blame in a biased system.

Complementary to our method of generating aspirational data
are methods of debiasing or cleaning data [5, 7, 21]. Importantly,



however, RAWLSNET acts on the distribution from which the data
comes, rather than the data itself. This yields two key advantages
over debiasing methods. First, the resulting BN can be sampled
from to generate aspirational datasets of any size and thus used to
run a wider variety of experimental investigation than what any
single debiased dataset could offer. Second, the alterations to the
BN — which we note are changes to the conditional probabilities
and not the structure of the BN — can be directly interpreted as
policy advice, as we discuss next.

1.0.3 Policy advice. Another use of RAWLSNET is to aid in decision-
making for policy makers. If decision-makers know the distribution
of talent for their task, then RAWLSNET can be used to inform their
decisions. Otherwise, the decision-makers may use RAWLSNET to
evaluate how different policies will affect FEO under a variety of
background assumptions regarding the distribution of talent. For
instance, RAWLSNET might be used to advise acceptance decisions
of a college admissions committee. The committee can evaluate the
impact of different admissions policies in scenarios where talent
is concentrated among few students, or where talent is equally
distributed. This use of RAWLSNET is discussed in detail in Section 6.

1.0.4 Contributions. We introduce RAWLSNET, a method for alter-
ing a BN so as to satisfy Rawlsian FEO. To our knowledge, RAWLSNET
is the first tool developed that produces aspirational (FEO) data
distributions. RAWLSNET alters BN models in a way that preserves
their initial structure. This preservation allows it to generate as-
pirational data for important social systems. Whenever satisfying
FEO is not possible, RAWLSNET outputs a BN whose distribution is
closest to satisfying FEO.

1.0.5 Paper structure. We provide background on FEO and its ap-
propriate applications in the next section. Then, we discuss the for-
malization of our problem and present our contribution: RAWLSNET
and its underlying mathematics. This is followed by experiments,
related work, and discussion.

2 FAIR EQUALITY OF OPPORTUNITY
FEO requires that any two people with similar talent and ambition
receive the same chance of achieving an advantageous social posi-
tion (e.g., a good job), regardless of their background. This principle
is designed to eliminate the effects of discrimination and other op-
pressive structures in determining who has access to advantageous
social positions. It requires that social features irrelevant to deter-
mining who will do best at a job are irrelevant to determining who
will receive the job.

FEO is one aspect of the Rawlsian theory justice as fairness [42,
44]. This theory is influential, well-supported, and widely popular
[8]. FEO itself is particularly plausible, as similar principles appear
in a variety of other theories [1]. Moreover, FEO has been used
by philosophers to argue for social justice interventions including
affirmative action [41, 49]. Note, also, that FEO is formally similar
to other kinds of substantive equality of opportunity principles
[22, 28, 45]. Thus, our work here can be applied to satisfying those
principles as well.

Rawls [42, 43, 44] offers a theory of what is required for a soci-
ety to be ideally fair. Rawls’ theory of justice as fairness consists
primarily of two principles. The first, which protects everyone’s

basic liberties (e.g., freedom of speech, religion, assembly), won’t
be our focus. The second principle governs the equitable distribu-
tion of wealth and social advantage. In particular, it concerns what
inequalities are acceptable in an egalitarian society. The second
principle itself consists of two parts: the first involves FEO, and
the second is the difference principle. FEO governs who is eligible
for unequal rewards, while the difference principle governs how
unequal those rewards may be.

FEO requires that any wealth inequalities in society must be
attached to advantageous social positions, what Rawls called offices.
An office is desirable employment that carries with it greater respon-
sibility, greater prestige, and/or higher pay. Rawls’ theory requires
that advantageous positions must be open to all applicants under
FEO. Thus, FEO applies directly to decisions about employment.
Obtaining an office is the only way, in a fair society, to become
wealthier than your peers. In sum, FEO governs how good jobs are
handed out.

Rawls called the sort of equality of opportunity we are interested
in “fair” to contrast it with a more familiar sort, which is often called
formal equality of opportunity (or formal EO for short). Formal EO
requires two things: (1) that positions of social advantage be open
to all applicants, and (2) that applicants be evaluated entirely based
on their qualifications for the position [2, 44]. Formal EO rules out
explicit discrimination based on group membership (e.g., race and
gender). It also rules out caste systems, nepotism, and favoritism.
Formal EO is essentially an ideal version of what contemporary
equality of opportunity laws governing housing and employment
aim at. While itself quite stringent, formal EO is compatible with a
wide variety of oppressive structures and implicit discrimination.
For instance, the hiring process for an engineering position might
conform to formal EO if it widely publicizes its openings, considers
all applications, and hires the most qualified engineers. But if only
men are allowed to attend engineering schools, the result is still
unfair. Formal EO is an important principle of fairness. RAWLSNET is
designed to recommend policies that will help satisfy FEO without
creating violations of formal EO. It achieves this by suggesting
alternative policies for decisions (such as college admissions) that
occur prior to handing out advantageous positions (such as hiring
decisions). Thus, formal EO for hiring decisions is maintained.

The primary difference between formal EO and FEO concerns
which features of an applicant are relevant to justifying hiring
choices. Formal EO focuses on qualifications: the skills, training,
and experience that an applicant has at the time of hiring, which de-
termine how good the applicant would be at the job. In a real-world,
contemporary society, sensitive but morally irrelevant features can
make a significant difference to what qualifications an applicant
has. Being born into a high SES family, for instance, has a large
impact on the kind of education one has access to. In the imagined
(but realistic) engineering case mentioned above, it was gender that
was inappropriately affecting educational opportunities. It is the
focus on qualifications that makes formal EO inadequate to fully
ensure genuine fairness. Yet qualifications are clearly enormously
important: we do not want our bridges built by engineers who did
not go to engineering school.

FEO is a principle meant to fill the gap between what formal
EO requires and what is required for a genuinely fair EO (hence
the name). It focuses not on qualifications at the time of hire, but



instead on innate talent and ambition. Here, we can understand
talent as an innate potential to be good at some job. Ambition is
one’s willingness to develop and use their talent. For most of us, no
amount of training, experience, and hard work could make us into
basketball players as good as Lebron James.What he has, in addition
to an incredible work ethic and ambition, is innate talent most of us
lack. Similarly, there are many other innate features which effect an
individual’s potential to excel at various jobs. Following Rawls, we
label these features, generically, as talent. A person’s willingness
to work to develop and employ his/her talents constitutes his/her
ambition. For brevity, we will generally use one variable, labeled
“talent,” to represent an individual’s innate talent and ambition.

According to Rawls, FEO requires that “those who are at the
same level of talent and ability, and have the same willingness to
use them, should have the same prospects of success regardless of
their initial place in the system” [43, p. 63]. Two people with the
same talent and degree of ambition should have equal chances of
obtaining desirable employment, and the social benefits it brings
with it. In other words, one’s chance of getting a good job should
be statistically independent of any features of an individual other
than his/her talent and ambition.1 FEO requires that features such
as ethnicity, gender, LGBTQ+ status, nationality, birthplace, etc.,
must all be statistically irrelevant to whether one achieves an office.
We call these sensitive features. Only talent and ambition should
ultimately make a difference to whether you get the job.

Despite the focus on talent and ambition, Rawls’ theory of fair-
ness is not a meritocratic theory. That is, Rawls does not suggest
that having greater innate talent makes a person more deserving
of greater rewards. Innate talent is not something one earns or
deserves credit for, and is therefore “arbitrary from a moral point
of view” [42, p. 72]. However, it can benefit everyone in society for
talented individuals to develop their talents, assuming the increased
wealth produced by deploying such talents is distributed equitably.
(This equitable distribution is ensured by the other part of Rawls’
second principle, the difference principle). The justification for the
appeal to talent in FEO, then, is not that talented people deserve
more wealth. Instead, the justification concerns improving things
for everyone. FEO is a principle that is tailored to eliminate unfair
advantages that occur as a result of social circumstances, while al-
lowing that talented individuals may be be incentivized to develop
and use their talents for everyone’s benefit.

FEO is perfectly compatible with thinking that there are no in-
nate differences in talent between individuals. In that case, FEO
will simply require that all individuals have an equal chance at
achieving an advantageous social position. RAWLSNET can easily
handle this assumption as well. Thus, we are not committed to
thinking there are innate talent differences. However, FEO is com-
patible with the assumption that there are. There is some empirical
evidence supporting the existence of innate talent differences from
the psychology of expertise [19].

An extremely plausible (and perhaps morally obligatory) assump-
tion is that innate talent is distributed independently of sensitive
features. Friedler et al. [2016] call this theWe are All Equal assump-
tion. There is no significant or compelling evidence to think innate
1Strictly speaking, what is required is that any two applicants with the same talent
and ambition should have the same probability of getting the job when not conditioned
on other attributes such as training.

talent differences track sensitive categories such as race. Mean-
while, there is strong evidence that various achievement gaps can
be explained in purely environmental terms [35–37]. There are thus
compelling moral and epistemic reasons to assume there are no
such inter-group differences [45]. This assumption is commonly
made in works that formalize substantive equality of opportunity
principles such as FEO [16, 22, 29, 30].

According to theWe are All Equal assumption, any differences
in job candidates’ qualifications that are correlated with sensitive
features must be the result of differences in experience and training.
FEO requires that such differences be made ultimately irrelevant to
determining who receives an advantageous position. Any two appli-
cants with the same talent and ambition should have the same prob-
ability of obtaining desirable employment. Satisfying FEO therefore
requires removing or ameliorating the impact of sensitive features
on employment.

As noted above, FEO must be satisfied in a way that avoids vio-
lating formal EO. Satisfying both principles requires changing the
way talent and ambition are related to qualifications.2 RAWLSNET is
designed to allow a decision-maker to satisfy FEO (when possible)
without creating violations of formal EO. It accomplishes this be-
cause it is designed to operate on decisions that are made prior to
the point of hiring for advantageous positions. Such decisions are not
directly governed by formal EO, as that principle concerns employ-
ment decisions exclusively. Our strategy is illustrated by our college
admissions example. There, the decision in question is whether to
admit someone to a prestigious college. But being a student at such
an institution is not an office: it is not a job by which unequal wealth
is distributed. Admissions do indirectly impact social advantage,
but only insofar as they impact hiring.

3 PROPOSED APPROACH: RAWLSNET
In this section we define what it is to be an FEO Application. We
also provide guidance for determining whether a task is an FEO
application. We then present RAWLSNET, a method for altering the
parameters of a BN model for an FEO application in order to sat-
isfy FEO. We also discuss runtime considerations and encoding
constraints of the underlying application.

3.1 FEO Applications
FEO governs the distribution of advantageous social positions.
Applied to our running example involving college admissions,
RAWLSNET is designed to determine the correct college acceptance
rates (i.e., the probability of being admitted) to ensure that FEO is
satisfied at the later stage of hiring. Our running example is what
we call an FEO application. “FEO application” is a novel term which
we define as: a decision which affects whether FEO is satisfied by a
distinct, subsequent hiring decision. Genuine FEO applications are
decisions that are needed to satisfy FEO, but which do not introduce
violations of formal equality of opportunity. We avoid violations of
formal EO by using earlier decisions to improve the qualifications
of talented applicants prior to the hiring process. In the college

2There is significant dispute about the relationship between formal and fair equality
of opportunity. In particular, there is dispute about whether satisfying FEO requires
also satisfying formal EO [2, 51, 52]. We seek to sidestep this dispute. We take both
principles to be important, and remain neutral on their relative priority.



admissions example, this involves making it more likely that tal-
ented students from low SES backgrounds are admitted to college,
which improves their qualifications for being hired. Thus, in our
running example we satisfy FEO without violating formal EO by
intervening on the earlier admissions decision.

3.1.1 A Guide for Recognizing FEO Applications. For a decision
to count as an FEO application, it must meet three conditions: it
must (1) affect the distribution of advantageous social positions
(i.e., good jobs), (2) be made prior to hiring decisions, and (3) be
made on the basis of appropriate features of applicants. This is
illustrated by our college admissions example, which meets all of
these conditions. These are necessary conditions for being an FEO
application. Moreover, any decision that meets these conditions is
likely to be such an application. Regarding condition (1), recall that
offices are desirable employment positions that carry with them
the social advantages that lead to inequality. Condition (2) helps
ensure that the decision-maker does not introduce violations of for-
mal EO. Condition (3) concerns the relevant features of applicants.
In an FEO application, we distinguish three categories of relevant
features. There are justifying features: features that morally justify
the inequalities which are attached to advantageous positions. Fol-
lowing Rawls, these are limited to talent(s) and ambition. There
are also sensitive features: features which should not be allowed to
lead to inequalities. As mentioned, these are features such as race,
gender, and socioeconomic status. Finally, there are what we simply
call “other” features. Other features may permissibly impact hiring
and other decisions, but which do not themselves justify inequality.
For the purposes of recognizing an FEO application, its crucial to
identify the relevant justifying features and sensitive features.

In our college admissions example, the other category includes
the exam score feature and the college admissions decision itself. In
fact, this is an important feature of an FEO application decision: it
will always concern a feature that is neither sensitive nor justifying.
This is because, as we have defined the term, an FEO application is
always a decision by someone other than the applicant, and is one
that indirectly impacts the distribution of advantageous positions.

3.2 Altering Bayesian Networks with RAWLSNET
RAWLSNET provides a method for altering a given BN (describing
an FEO application) such that its defined distribution satisfies the
Rawlsian FEO principle. RAWLSNET can work when data is provided
with or without a BN. In the latter case, it will learn a BN structure
that best fits the data. In the discussion to follow, we assume a BN
structure has been given alongwith the datawith variablesV , edges
E, and parameters P – i.e., elements of the conditional probability
tables (CPTs) of each variable. The variables are partitioned asV =

𝐽𝐽𝐽∪𝑆𝑆𝑆∪𝑂𝑂𝑂 where 𝐽𝐽𝐽 is the set of variablesmorally justified for inequality
(e.g., talent), 𝑆𝑆𝑆 is the set of sensitive variables (e.g., socioeconomic
status), and𝑂𝑂𝑂 is the set of remaining (other) variables. In addition,
a control variable 𝐶 ∈ 𝑂𝑂𝑂 is specified as the variable which we can
control the CPT of (e.g., college admissions) and a target variable
𝑄 ∈ 𝑂𝑂𝑂 (e.g., obtaining a good job). All variables must be categorical
because we model discrete probability distributions. Further, we
assume that the justified and sensitive variables, given their innate
nature, are root nodes in the BN structure. This assumption ensures
that we solve a linear system of equations. One can optionally

supply RAWLSNET a set of feasibility constraints, which we discuss
below. Table 1 summarizes our notation.

In this context, FEO is obtained by ensuring statistical indepen-
dence between the target variable 𝑄 , and the sensitive variables SSS,
conditioned on the justified variables JJJ. That is, we seek to set the
CPT values of the control variable 𝐶 such that:

𝑄 ⊥⊥ 𝑆𝑆𝑆 | 𝐽𝐽𝐽 (1)

Equivalently, we seek values for the conditional probability of the
control variable 𝐶 given its parents such that:

𝑃 (𝑄 | 𝑗𝑗𝑗) = 𝑃 (𝑄 | 𝑗𝑗𝑗 ∪ 𝑠𝑠𝑠) (2)

for every possible assignment 𝑗𝑗𝑗 of variables in 𝐽𝐽𝐽 and assignment 𝑠𝑠𝑠
of variables in 𝑆𝑆𝑆 . For any particular assignments 𝑗𝑗𝑗, 𝑠𝑠𝑠,𝑜𝑜𝑜 of justified,
sensitive, and other variables respectively, we let:

Par (𝑉 ; 𝑗𝑗𝑗, 𝑠𝑠𝑠,𝑜𝑜𝑜) (3)

denote the set of variables (and their assignments in 𝑗𝑗𝑗, 𝑠𝑠𝑠,𝑜𝑜𝑜) that are
the parents of 𝑉 .

Note that (2) is a collection of desired qualities. For ease of nota-
tion, we focus on just one. Namely, our goal is to satisfy:

𝑃 (𝑞 | 𝑗𝑗𝑗) = 𝑃 (𝑞 | 𝑗𝑗𝑗, 𝑠𝑠𝑠) (4)

We first note that:

𝑃 (𝑞 | 𝑗𝑗𝑗) = 𝛼𝑃 (𝑞, 𝑗𝑗𝑗) (5)

= 𝛼
∑
𝑜𝑜𝑜

∑
𝑠𝑠𝑠

𝑃 (𝑞, 𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠) (6)

where 𝛼 is a normalization constant, and 𝑜𝑜𝑜 ranges over all possible
assignments for𝑂𝑂𝑂 (resp. 𝑠𝑠𝑠 , 𝑆𝑆𝑆). We let 𝑍 (𝑞)

𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠
= 𝑃 (𝑞 | Par (𝑄 ; 𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠))

and for any set𝑉𝑉𝑉 of variables and assignment 𝑎𝑎𝑎 of its parents we
let:

𝑍
(𝑉𝑉𝑉 )
𝑎𝑎𝑎 =

∏
𝑖

𝑃 (𝑉𝑖 | Par (𝑉𝑖 ;𝑎𝑎𝑎)) (7)

For ease of notation, we suppress the dependency on the assignment
when clear and simply write𝑍 (𝑞) , 𝑍 (𝑆𝑆𝑆) . With this notation we have:

𝑃 (𝑞 | 𝑗𝑗𝑗) = 𝛼
∑
𝑜𝑜𝑜

∑
𝑠𝑠𝑠

𝑍 (𝑞)𝑍 ( 𝐽 )𝑍 (𝑆)𝑍 (𝑂) (8)

Separating out the value in 𝑍 (𝑂) corresponding to 𝐶 we let:

𝑍
(𝑂)
𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠

= 𝑍
(𝑂′)
𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠

𝑃 (𝑐 |Par (𝐶; 𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠)) (9)

to obtain:

𝑃 (𝑞 | 𝑗𝑗𝑗) = 𝛼
∑
𝑜𝑜𝑜

∑
𝑠𝑠𝑠

𝑍 (𝑞)𝑍 ( 𝐽 )𝑍 (𝑆)𝑍 (𝑂′)𝑃 (𝑐 |Par (𝐶; 𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠)) (10)

Similarly, for the right-hand side of (4) we have:

𝑃 (𝑞 | 𝑗𝑗𝑗, 𝑠𝑠𝑠) = 𝛼
∑
𝑜𝑜𝑜

𝑍 (𝑞)𝑍 ( 𝐽 )𝑍 (𝑆)𝑍 (𝑂′)𝑃 (𝑐 |Par (𝐶; 𝑗𝑗𝑗,𝑜𝑜𝑜,𝑠𝑠𝑠)) (11)

Therefore we can satisfy Rawlsian FEO by satisfying the equality
(10) = (11) for each assignments 𝑗𝑗𝑗 and 𝑠𝑠𝑠 . This yields a system of
linear equations, solvable using standard methods. Equations for
which the normalization constants are undefined due to division
by zero, as is the case when talent is equal for all individuals, are
omitted from the system.



Symbol Meaning
𝐽𝐽𝐽 = 𝐽1, . . . , 𝐽 |𝐽𝐽𝐽 | The set of justified variables
𝑆𝑆𝑆 = 𝑆1, . . . , 𝑆 |𝑆𝑆𝑆 | The set of sensitive variables
𝑂𝑂𝑂 = 𝑂1, . . . ,𝑂 |𝑂𝑂𝑂 | The set of other variables
𝑣𝑣𝑣 = 𝑣1, . . . , 𝑣 |𝑉𝑉𝑉 | An assignment to the variables in the corresponding set𝑉𝑉𝑉
Par (𝑉 ; 𝑗𝑗𝑗, 𝑠𝑠𝑠,𝑜𝑜𝑜) The set of variables that are parents of 𝑉 , and their assignments in 𝑗𝑗𝑗, 𝑠𝑠𝑠,𝑜𝑜𝑜

𝑄,𝑞 The target variable, a particular assignment of it
𝐶, 𝑐 The control variable, a particular assignment of it

Table 1: Notation table. RAWLSNET is provided a BN with variables 𝐽𝐽𝐽 ∪ 𝑆𝑆𝑆 ∪𝑂𝑂𝑂 . In addition, a control variable 𝐶 ∈ 𝑂𝑂𝑂 and target
variable 𝑄 ∈ 𝑂𝑂𝑂 are specified. The output of RAWLSNET is a new BN, identical to the original in structure and all parameters
except select elements of the CPT for 𝐶, which are edited such that Rawlsian FEO is satisfied for the target variable 𝑄 .

3.2.1 Feasibility Constraints. Consider our running example of
college admissions. Using RAWLSNET, one can select an admissions
policy so as to ensure fair (in the Rawlsian sense) job allocation.
However, if we solve the system of equations described above, there
is no guarantee that the resulting admission policy is satisifiable in
practice — it may require that the school admits substantially more
(or fewer) students than is viable. We therefore imbue RAWLSNET
with the capability to accept a set of constraints.

Given an equality constraint on some marginal distribution of
the BN (e.g., the expected number of students admitted to college
is precisely 𝑝 percent of the population), we simply add this to the
collection of equations defined above. With similar derivation to
(5) through (10), we note that the above constraint is also linear
and thus the system is still efficiently solvable. Given inequality
constraints (e.g., a particular marginal probability must be in some
interval), RAWLSNET solves a linear program.

3.2.2 Runtime. We note the following runtime considerations. At
its core, RAWLSNET is solving the linear system above. The two bot-
tlenecks in terms of runtime are (a) the number of constraints and
(b) the time it takes to construct the constraints. For every assign-
ment of 𝐽𝐽𝐽 and 𝑆𝑆𝑆 , we have a constraint of the form in Equation (4).
While this is exponential in |𝐽𝐽𝐽 | + |𝑆𝑆𝑆 |, we note that in practice both
sets are typically small. To compute the coefficients (i.e., the 𝑍 ( ·)

terms in (10) and (11)), we perform exact inference in the underly-
ing BN. This is doable in linear time via dynamic programming if
the BN is a polytree [48]. We note that approximate inference (e.g.,
via particle filtering) is an option for general Bayesian Networks.

4 EXPERIMENTS
We demonstrate the effectiveness of RAWLSNET on the following
data: (1) our illustrative college-admissions example (2) another
illustrative example regarding campaign financing for elections
(3) a synthetic HR dataset examining employee promotions by
IBM, and (4) a real campus recruitment dataset . All experiments
were run on a laptop with 8GB memory and a 1.8 GHz Intel Core i5
processor. We utilized cvxpy to optimize constrained linear systems
of equations, pgmpy for Bayesian Network training and inferences,
and matplotlib for plotting. The code is available at https://github.
com/dliu18/rawlsnet.

4.1 Illustrative Example: College Admissions
We start with our college admissions example, where the BN is
specified in Figure 1. We assign variable names to each of the
nodes in the BN.𝑇 is Talent, 𝑆𝐸𝑆 is Socioeconomic Status, 𝐸 is Test
(Exam) Score, 𝐶 is College, and 𝐽 is Job. With this notation, the
justified, sensitive, and other variables are as follows: JJJ= {T}; SSS=
{SES}; OOO= {E, C, J}. The control variable is the college admissions
policy 𝐶 and the query variable is job 𝐽 . To satisfy FEO, whether
someone gets a job must be independent of their SES given their
Talent. Therefore, the following equalities must hold: 𝑃 (𝐽 |𝑇=Low,
𝑆𝐸𝑆=Low) ≡ 𝑃 (𝐽 |𝑇=Low, 𝑆𝐸𝑆=High) and 𝑃 (𝐽 |𝑇=High, 𝑆𝐸𝑆=Low)
≡ 𝑃 (𝐽 |𝑇=High, 𝑆𝐸𝑆=High). Substituting Equation 11 into these
equations yields a linear system of equations, where the variables
are the CPT values for the College node. RAWLSNET solves this linear
system.

Results. Figure 2 visualizes the distribution of those receiving
good jobs before and after we perform RAWLSNET. As the figure
shows, both distributions share the same testing and hiring policies
that have been chosen to encode well-known societal biases, such as
the fact that those with high SES backgrounds generally fare better
in the hiring process than those of low socioeconomic background.

We highlight the following flexibility of RAWLSNET. Two of the
four CPT values for college admission are fixed, and RAWLSNET is
tasked with determining the other two values. As a result, the
solution for this particular example can be interpreted as: given the
admissions policy for high SES individuals, what policy must be
implemented for the low SES applicants to ensure FEO at the job
application phase?

The probabilities of college-admissions and job-offers in Fig-
ure 2(a) agree with our expectations of an unfair world. However,
the probabilities after RAWLSNEThas been applied in Figure 2(b) fixes
this unfairness – as indicated by the intersection of the blue and
purple lines as well as the red and green lines.

We highlight an additional capability of RAWLSNET: feasibility
constraints. In Figure 2(c), we show the output of RAWLSNET when
the aggregate college-admissions rate is capped at 50%. When such
(linear) constraints are at play, RAWLSNET solves a linear program.
As expected, the conditional probabilities for Job are no longer
equal (as FEO is not achievable under these constraints), but they
are much closer to FEO compared to the original distribution (as
seen in Figure 2(a)). We note that RAWLSNET obtaining probabilities
as close as possible to an FEO satisfying distribution is especially
helpful when it is used to inform policy makers. In this example,

https://github.com/dliu18/rawlsnet
https://github.com/dliu18/rawlsnet


(a) Probability of desired outcome before applying RAWLSNET.

(b) Probability of desired outcome after applying RAWLSNET.

(c) Probability of desired outcome after applying RAWLSNETwith fea-
sibility constraints.

Figure 2: Visualizations of the outcomes of the synthetic
college-admissions BN. The x-axis lists each successive de-
sired outcome and the y-axis represents the proportion of
the population that obtained the desired outcome. The pop-
ulation is further broken downon the basis of SES and talent.
Except for the college-admissions CPT, the other CPTs were
identical. RAWLSNET can achieve FEO with the probability of
obtaining a job being independent of SES.

the college-admissions committee can better understand how the
cap on the admissions rate affects their ability to satisfy FEO.

Figure 3: The synthetic campaign finance example sets the
probability of being born with 𝐿𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝 skills as the jus-
tified variable. The probability of belonging to a 𝐹𝑎𝑚𝑖𝑙𝑦

with political influence is chosen as the sensitive vari-
able. 𝐹𝑢𝑛𝑑𝑖𝑛𝑔 is the control variable. 𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is the advanta-
geous social position (i.e., the target variable). The variables
𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒, 𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 are other variables.

4.2 Illustrative Example: Campaign Finance
To highlight a situation where strict FEO is not satisfiable, we
consider the domain of financing a political campaign and show the
BN structure for this example in Figure 3. We choose the values for
the CPTs based on our understanding of the real-world dynamics of
an election campaign, where we assume that those who come from
a family of politicians, have a better chance of obtaining funding
and winning elections than those who do not. All variables in this
example are binary, except the target variable of 𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 which
can take on three values: “Not Elected”, “Nominee", and “Elected".

Results. Table 2 shows the original probabilities for the 𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛
variable given 𝐿𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝 and 𝐹𝑎𝑚𝑖𝑙𝑦. The goal of RAWLSNET is to
modify the CPT for the 𝐹𝑢𝑛𝑑𝑖𝑛𝑔 variable such that for a given
𝐿𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝 level (i.e., “Good” or “Poor”), the probability of being
elected or nominated does not depend on whether or not a person
comes from a family with political history. Given the initial CPTs,
RAWLSNETmanages to reduce the disparity between the probabilities
of winning given leadership and family background (see Table 3).
However, the conditional probabilities do not satisfy Equation 4.
To solve the system of equations, seven of the eight CPT values for
the 𝐹𝑢𝑛𝑑𝑖𝑛𝑔 variable would need to be greater than one. Instead,
RAWLSNET provides valid CPT values that come closest to satisfying
Equation 4, where closest refers to the CPT values that minimize
the squared-difference between Equations 10 and 11.

4.3 Synthetic Data: IBM HR Dataset
The IBMHRAnalytics EmployeeAttrition& Performance dataset [50]
is a synthetic dataset created by IBM tomodel the factors that lead to
employee attrition. We use the dataset to model gender-bias in staff



Lead. Family Not Elected Nominee Elected
Poor Not Political 29.20% 33.20% 37.60%
Poor Political 19.1% 8.60% 72.30%
Good Not Political 27.5% 30.20% 42.30%
Good Political 17.8% 8.10% 74.10%

Table 2: Original probability values for
𝑃 (𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 |𝐿𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝, 𝐹𝑎𝑚𝑖𝑙𝑦) for the Campaign Finance
example.

Lead. Family Not Elected Nominee Elected
Poor Not Political 16.34% 24.10% 59.50%
Poor Political 22.34% 11.10% 66.60%
Good Not Political 15.96% 21.40% 62.60%
Good Political 21.14% 10.70% 68.20%

Table 3: Updated probability values for
𝑃 (𝐸𝑙𝑒𝑐𝑡𝑖𝑜𝑛 |𝐿𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝, 𝐹𝑎𝑚𝑖𝑙𝑦) after using RAWLSNET for
the Campaign Finance example. Note that FEO cannot
be satisfied in this case, thus RAWLSNET selects the closest
possible distribution.

promotions. 𝐺𝑒𝑛𝑑𝑒𝑟 is the sensitive variable. 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 is a proxy
for talent; thus it is the justified variable. 𝑅𝑒𝑐𝑒𝑛𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛 is the ad-
vantageous social position (i.e., the target variable). We assume that
work-life balance (named𝑊𝑜𝑟𝑘𝐿𝑖 𝑓 𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒) and 𝐽𝑜𝑏𝑆𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛

are the other variables, with the𝑊𝑜𝑟𝑘𝐿𝑖 𝑓 𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒 also being the
control variable. The relationships between the variables are shown
in Figure 4. This data set contains 35 features out of which 4
are related to the FEO task at hand. The variables 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 and
𝐽𝑜𝑏𝑆𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 are categorical with 5 and 4 categories, respec-
tively. Higher values correspond to greater education and satisfac-
tion. The variable 𝑅𝑒𝑐𝑒𝑛𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛 refers to the number of years
since the employeewas last promoted.We convert𝑅𝑒𝑐𝑒𝑛𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛

into a binary variable by thresholding at the median value. The
variable𝑊𝑜𝑟𝑘𝐿𝑖 𝑓 𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒 is also a categorical variable with 4 cat-
egories. We convert it into a binary variable for ease of exposition.

Results. Table 4 shows the original probabilities of getting a
promotion given an education level (Bachelors, Masters, etc.) and
gender. We observe slight discrepancies between the promotion
probabilities of male and female employees. Table 5 shows the
results after RAWLSNET was applied to this network, which updated
the values of the CPT for the𝑊𝑜𝑟𝑘𝐿𝑖 𝑓 𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒 node. The results
show that given an education level, the probability of promotions
stay the same regardless of gender.

4.4 Real Data: Campus Recruitment
The Campus Recruitment dataset from Kaggle [47] contains infor-
mation about students in India. It includes students’ scores from
standardized testing, whether or not they got a job at the end of
school, and with what salary. While the data set is not primarily
designed for making decisions which count as FEO applications, it
includes relevant data and is publicly available. It involves at least
one decision that affects the distribution of advantageous social

Figure 4: IBM HR Example: We consider the node 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛
as a proxy for talent (thus, it is the justified variable).
𝐺𝑒𝑛𝑑𝑒𝑟 is the sensitive variable. 𝑊𝑜𝑟𝑘𝐿𝑖 𝑓 𝑒𝐵𝑎𝑙𝑎𝑛𝑐𝑒 is the
control variable since we assume that employers can al-
ter it. 𝑅𝑒𝑐𝑒𝑛𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛 is the advantageous social position
within the company, and hence is the target variable.
𝐽𝑜𝑏𝑆𝑎𝑡𝑖𝑠 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 is an other variable.

Education Gender Promotion
Below College Male 36.27%
Below College Female 37.17%

College Male 36.27%
College Female 37.17%
Bachelor Male 41.79%
Bachelor Female 39.87%
Master Male 40.19%
Master Female 40.73%
Doctor Male 40.19%
Doctor Female 36.51%

Table 4: Original probability values for
𝑃 (𝑅𝑒𝑐𝑒𝑛𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛 |𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛,𝐺𝑒𝑛𝑑𝑒𝑟 ) for the IBM HR
data.

positions: whether a student receives a competitive internship. We
assume that students receiving internships have a better chance
at landing a job later. Thus, we use this decision as an example
of an FEO application. Note, however, that the justified variable,
𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡 , is an imperfect proxy for talent. It represents the
earliest standardized test score available for each student. We dis-
cuss important caveats for using RAWLSNET in cases like this in
Section 6.

We assume 𝐺𝑒𝑛𝑑𝑒𝑟 is the sensitive variable. 𝐼𝑛𝑡𝑒𝑟𝑛𝑠ℎ𝑖𝑝 refers
to whether the student received a competitive internship and is
our control variable. 𝑆𝑎𝑙𝑎𝑟𝑦 is the advantageous social position
(i.e., the target variable). The BN shown in Figure 5 also includes
variables 𝐷𝑒𝑔𝑟𝑒𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡 that represents the undergraduate scores,
𝐻𝑖𝑔ℎ𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡 that represents standardized test scores during
high school, and 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑇𝑒𝑠𝑡 that stands for scores earned in a



Education Gender Promotion
Below College Male 32.61%
Below College Female 32.61%

College Male 32.61%
College Female 32.61%
Bachelor Male 43.04%
Bachelor Female 43.04%
Master Male 38.33%
Master Female 38.33%
Doctor Male 34.80%
Doctor Female 34.80%

Table 5: Updated probability values for
𝑃 (𝑅𝑒𝑐𝑒𝑛𝑡𝑃𝑟𝑜𝑚𝑜𝑡𝑖𝑜𝑛 |𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛,𝐺𝑒𝑛𝑑𝑒𝑟 ) after using RAWLSNET
for IBM HR data.

test that determines eligibility for the job. These variables constitute
the other variables.3

The datatset consists of 15 features of which we use 7 that
are relevant to the FEO-use case. The variables 𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡 ,
𝐷𝑒𝑔𝑟𝑒𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡 , 𝐻𝑖𝑔ℎ𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡 , 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑇𝑒𝑠𝑡 and 𝑆𝑎𝑙𝑎𝑟𝑦
are continuous variables. We used the median values for each of
these variables to convert them to binary variables. The variables
𝐺𝑒𝑛𝑑𝑒𝑟 and 𝐼𝑛𝑡𝑒𝑟𝑛𝑠ℎ𝑖𝑝 are categorical variables with a cardinality
of 2 that contain strings, which were converted to numeric categor-
ical variables. The relationships among these variables are shown
in Figure 5. The CPTs for each node were learned from the data
using maximum likelihood estimation.

Results. Table 6 shows the original probabilities of getting a
good job given 𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡 (i.e., the talent proxy) and 𝐺𝑒𝑛𝑑𝑒𝑟 .
The table shows that male applicants have a higher probability
of getting a good salary as compared to female applicants given
the same talents. Table 7 shows the probabilities of getting a job
given talent and gender after RAWLSNET has modified the CPT for
the control variable 𝐼𝑛𝑡𝑒𝑟𝑛𝑠ℎ𝑖𝑝 . We observe that FEO is satisfied
and the probabilities of getting a good salary remain the same
irrespective of gender.

SchoolPercent Gender Salary
Low Score Male 50.86%
Low Score Female 30.59%
High Score Male 61.87%
High Score Female 33.89%

Table 6: Original probability values for
𝑃 (𝑆𝑎𝑙𝑎𝑟𝑦 |𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡,𝐺𝑒𝑛𝑑𝑒𝑟 ) for the Campus Recruit-
ment Data.

5 RELATEDWORK
In recent years, Rawls’ work has become influential in the algo-
rithmic fairness literature [3, 31, 34]. Some of this work focuses
3The variable names have been changed to improve readability. They do not necessarily
match the ones in the original dataset.

Figure 5: The campus recruitment data looks at the probabil-
ity of getting a job with a good salary given the innate talent
and gender of the applicant.We consider𝐺𝑒𝑛𝑑𝑒𝑟 as the sensi-
tive variable and 𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡 as the justified variable. The
nodes 𝐻𝑖𝑔ℎ𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡 , 𝐷𝑒𝑔𝑟𝑒𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡 , and 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑇𝑒𝑠𝑡

are test scores for high school, undergraduate degree and an
employment eligibility test, respectively. They all belong to
the other variables. 𝐼𝑛𝑡𝑒𝑟𝑛𝑠ℎ𝑖𝑝 looks at distributing intern-
ships to students which could help their prospects for a job
at a later time. This is the control variable. 𝑆𝑎𝑙𝑎𝑟𝑦 is the ad-
vantageous social position and the target variable.

SchoolPercent Gender Salary
Low Score Male 43.06%
Low Score Female 43.06%
High Score Male 47.76%
High Score Female 47.76%

Table 7: Updated probability values for
𝑃 (𝑆𝑎𝑙𝑎𝑟𝑦 |𝑆𝑐ℎ𝑜𝑜𝑙𝑃𝑒𝑟𝑐𝑒𝑛𝑡,𝐺𝑒𝑛𝑑𝑒𝑟 ) after using RAWLSNET for
the Campus Recruitment Data.

on using the other aspects of Rawls’ theory, such as the original
position [42], to develop novel principles of governance to ensure
appropriate transparency, explainability, and fairness [18, 27, 53].
Other work has appealed to Rawls’ difference principle or prior-
itarian principles inspired by it [11, 13, 26]. These works share a
general philosophical outlook with our project, as they concern
justice as fairness. However, they appeal to different parts of the
Rawlsian framework to achieve different goals. Our work is comple-
mentary to these others as it implements another aspect of Rawls’
theory. Together, these approaches offer the potential for a unified
contractualist approach to the ethics of AI. In contrast, Lundgard
[31] raises objections to use of Rawls’ theory for fair ML, but these
objections are less pressing for FEO in particular.

There has also been significant interest in complementary projects
in the algorithmic fairness literature which appeal to substantive
equality of opportunity principles, including FEO [14, 16, 20, 23, 24,
33, 55]. These appeals are used to justify various specific fairness



metrics, and to adjudicate disputes between these metrics. Work
in this literature appeals to Rawls’ FEO and similar substantive
equality of opportunity principles, in particular those discussed
and formalized by John Roemer [45, 46]. The primary difference be-
tween our project and these others is that they are concerned with
determining appropriate metrics of fairness. In other words, they
are looking to measure the degree to which particular uses of ML
algorithms count as fair. They use these metrics to evaluate and mit-
igate bias in ML. Many of those who appeal to FEO do so in order to
argue for one or another fairness metric as better than alternatives,
or at least better for a particular type of circumstance. For exam-
ple, Binns argues that FEO considerations justify appeals to group
fairness metrics in certain contexts and individual fairness metrics
in other contexts [6]. Loi et al. argue that a modified, generalized
version of FEO justifies two different fairness metrics, sufficiency
and separability, in distinct contexts [30]. Heidari et al. similarly
argue that various notions of algorithmic fairness can be justified
as special cases of a substantive EO principles like FEO [22].

Our project offers a useful addition to these other substantive
equality of opportunity approaches. RAWLSNET is novel in that it
models interventions on decisions. It computes which interventions
will obtain FEO (or promote it as much as possible). Thus, the
goal of our project is significantly different than the goal of those
in the fairness-metric literature. In addition, RAWLSNET’s output
distribution can be sampled to generate new aspirational data, or it
can be used to inform decision-makers. It is less concerned with
evaluating the performance of ML algorithms, though it might be
useful for that purpose, as we hope to explore in future work.

Previous efforts in training fair BNs achieve fairness by either re-
training the BN with re-labeled data [32] or imposing fairness con-
straints during parameter learning [12]. RAWLSNET instead directly
modifies the appropriate conditional probability values without
changing the structure of the BN. Unlike past approaches [10], our
goal is to generate fair data distributions, which can subsequently
be used for sampling aspirational data or guiding policy decisions.

Previous attempts have also been made to generate fair data with
other models, such as GANs [54]. However, our approach is unique
in basing our definition of fairness on Rawls and in producing aspi-
rational data distributions. As such, we are able to provide clearer
guidance on when aspirational data generated through RAWLSNET
should and should not be used.

6 DISCUSSION
We presented RAWLSNET: a method that determines how a BNmodel
of an FEO application must be altered in order to satisfy FEO.
RAWLSNET offers the ability to model circumstances of ideal fairness
in order to generate distributions over aspirational (FEO) data. This
aspirational data distribution can be used by researchers to promote
fair ML by sampling from it to discover and avoid pitfalls in ML
algorithms, which can lead to unfairness despite unbiased data.

RAWLSNET can also be used to offer advice to decision-makers
seeking to promote FEO. However, caution must be exercised when
using RAWLSNET for this purpose. In most circumstances, RAWLSNET
should only be used for indirect advice: evaluating courses of action
under a variety of hypothetical circumstances. The system’s direct
advice will reliably promote fairness only if practitioners have a

reliable, unbiased proxy for talent. In most cases this condition
will not be satisfied, given the empirical difficulties in isolating
the impact of innate talent on measures of achievement such as
standardized testing.

The accuracy of the results of RAWLSNET depend on the accuracy
of the assignments of the variables in the data to the appropriate
justified, sensitive, and other categories. Talent refers to an indi-
vidual’s innate, intrinsic features which partially determine their
capability for succeeding and excelling in a social position. These
features are only indirectly observable. Moreover, the actual evi-
dence we have regarding innate talent will often be confounded
by the complexity of the social systems which impact individual
education and development. For instance, a good proxy for talent
may be early standardized testing. However, a student’s test scores
will also certainly be influenced by their early home life, which is
in turn influenced by factors like socioeconomic status. Thus, the
very bias we are attempting to eliminate may creep into the proxy
we use to evaluate talent.

Our use of the campus recruitment data [47] illustrates some of
the problems for using RAWLSNET for policy advice. In order to make
use of a public data set we used an imperfect proxy for talent. We
assigned the “SchoolPercent” feature, which refers to standardized
test scores, to the justified variable category on the assumption
that it was the best available proxy for talent. However, in this
case the proxy will certainly be imperfect, as sensitive features are
likely to impact this test score. RAWLSNET would do a better job
at advising policy decisions to promote FEO with a better proxy
for talent. As it stands, the recommendations of RAWLSNET for
this example may help to promote FEO, but they will not be able
to guarantee FEO is satisfied without a better, less biased proxy
for talent. In future research, we intend to pair RAWLSNET with
methods that infer the distribution of unobserved features such
as innate talent. In the meantime, taking RAWLSNET’s output as
direct advice should be avoided. RAWLSNET can be safely used to
provide indirect advice for policy makers and domain experts. It
can provide answers to hypothetical questions regarding how a
policy will fare with respect to FEO, assuming different possible
distributions of talent in the relevant population. To illustrate this,
imagine a group of political scientists developing policy proposals
for ameliorating the effect of SES on standardized test scores. They
have done a number of empirical studies to gather data in different
parts of the country. Using a variety of ML methods, they create
a set of Bayesian Networks that model different possible ways
the world could be, consistent with their data. They are not sure
which one is the most accurate. These scientists could use RAWLSNET
to find the best policy to promote FEO in each one of these BN
models. If the one policy for giving out extra training is successful
in promoting FEO in all their BN models, this could provide support
for implementing that policy. Alternatively, it might be that a policy
works well in some circumstances but fails disastrously in others.
This would then be a sign that more research is needed before
implementing the policy. In this way, RAWLSNET provides useful
information, despite the fact that one cannot merely take its output
as a proposed policy.
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