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Abstract

Automated learning and decision making systems in public-
facing applications are vulnerable to malicious attacks. Ex-
amples of such systems include spam detectors, credit card
fraud detectors, and network intrusion detection systems.
These systems are at further risk of attack when money is
directly involved, such as market forecasters or decision sys-
tems used in determining insurance or loan rates. In this pa-
per, we consider the setting where a predictor Bob has a fixed
model, and an unknown attacker Alice aims to perturb (or
poison) future test instances so as to alter Bob’s prediction
to her benefit. We focus specifically on Bob’s optimal de-
fense actions to limit Alice’s effectiveness. We define a gen-
eral framework for determining Bob’s optimal defense action
against Alice’s worst-case attack. We then demonstrate our
framework by considering linear predictors, where we pro-
vide tractable methods of determining the optimal defense
action. Using these methods, we perform an empirical inves-
tigation of optimal defense actions for a particular class of
linear models — autoregressive forecasters — and find that
for ten real world futures markets, the optimal defense action
reduces the Bob’s loss by between 78 and 97%.

Introduction
Systems in domains such as finance, energy, medicine, en-
tertainment, security, advertising, etc., increasingly rely on
diverse input data. If decisions in these systems are based on
the output of automated learning systems, then some actors
may have incentive to alter (or poison) input data so as to
affect the learned system. Thus, any such system should be
robust to these threats.

The study of effective strategies in the presence of ad-
versaries has long been of interest (Tzu Circa 500 BCE).
Broadly speaking, there are two forms of data poisoning at-
tacks against a learning system — altering the data while
the model is being trained, and altering the data fed into an
already learned model. In this work, we focus on the latter
setting.

We consider the setting where a predictor, Bob, has a
fixed, publicly known prediction function. For example, Bob
may be an insurance company estimating the expected future
cost of an applicant to determine terms (e.g., the monthly
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premium) of the insurance plan offered. An actor, the ad-
versary Alice with motivation unknown to Bob, asserts her
limited control over the features (e.g., to lie about her age,
credit history, etc.) fed into Bob’s prediction function, to at-
tempt to pull his prediction toward her goal. An attacker is
defined by her target and her loss function (measuring the
distance of Bob’s resulting prediction to her target), both of
which we assume are unknown to Bob. Bob may select some
action from a set of available defense actions, and aims to
limit the effectiveness of any potential attacker. In our insur-
ance example, perhaps Bob can verify certain aspects of her
application with third parties.

We assume no security through obscurity. That is, Bob
publishes his model and selected defense action, and Alice
studies both to plan her attack. Under this setting, Bob aims
to best defend himself. In this work, we answer the question:
What action should Bob take to best defend against an un-
known attacker, assuming worst case initial values, attacker
target, and attacker loss function?

A primary goal of adversarial learning research is de-
fense. That is, to augment or create learners (or models) so
as to harden them against attackers. We address the issue
of defense explicitly, by framing the interaction between at-
tacker and predictor as a two player, non-zero sum, Stack-
elberg game. Specifically, in this work we make three pri-
mary contributions: (i) We define a general framework for a
predictor’s explicit defense strategy against intelligent, un-
known adversaries. (ii) We utilize the framework to provide
tractably computable optimal actions for linear predictors.
(iii) We empirically demonstrate our methods on real world
data sets, and perform an investigation of their properties on
synthetic data.

Defense Framework
An agent Bob is a predictor with a fixed function mapping
instances in an input space X to target values in an out-
put space Y . We denote Bob’s fixed, presumably learned,
prediction function as f : X → Y . Our framework is ap-
plicable to general prediction. That is, Bob’s task may be,
e.g., (binary) classification (f : Rd → {0, 1}) regression
(f : Rd → R), clustering (hard or soft) (f : Rd → [1, . . . , k]

or f : Rd → Sk), ranking (Rd×n →
({1,...,k}

k

)
) or other

forms of prediction. For ease of notation we assumeX ⊆ Rd



and Y ⊆ Rm, where d,m ∈ Z+.
We illustrate the concepts described in this work by use of

a running example. Bob takes as input daily stock prices for
Wednesday (xW ) and Thursday (xT ) and predicts values for
x̂F = 1.5xT − 1.0xW for Friday, and x̂S = 1.5x̂F − 1.0xT
for Saturday.

Alice is an adversary with limited ability to perturb or
poison test instances before Bob observes them. She aims
to perform an attractive (Alfeld, Zhu, and Barford 2016) at-
tack, moving Bob’s prediction towards some target. After
observing a test instance1 xxx ∈ X , Alice will select a poi-
son vector αααααααααatr and supply Bob with the poisoned instance
xxx +αααααααααatr. We define Alice in terms of: (i) Her target ttt ∈ Y ,
which she aims to pull Bob’s prediction toward2. (ii) Her
loss function ‖·‖A, where ‖000‖A = 0 and ‖aaa‖A > 0 ∀aaa 6= 000.
(iii) Her set of feasible attacks A. (iv) Her effort function
g (·) : A → R, defining the costs she incurs for a given
attack (g (ααα) ≥ 0 ∀ααα).

We assume a powerful attacker. Namely, Alice has full
knowledge of Bob’s model, and will select the attack which
minimizes the sum of her loss and effort. Formally, Alice
selects the optimal attack by solving:

αααααααααatr (A,xxx, ttt, ‖·‖A , g (·)) (1)
def
= argminααα∈A ‖f(xxx+ααα)− ttt‖A + g (ααα)

For a variety of settings, there are known, tractable methods
for computing Alice’s optimal attack (Alfeld, Zhu, and Bar-
ford 2016). We instead focus on Bob, defining a framework
for determining his optimal method of defending against an
unknown adversary Alice.

We phrase the interplay between Alice and Bob as a
one-shot, two-player, non-zero-sum, Stackelberg game. For
brevity, we restrict our attention to settings where Bob con-
siders only pure (as opposed to mixed) strategies, and his
actions are to further restrict Alice. Our methods, however,
extend beyond this. In further interest of clarity, we make
the order of events explicit: (1) Bob selects action β from
his set of potential actions B. (2) Alice observes f, β, and
xxx. (3) Alice selects her poison vector αααααααααatr (from A con-
strained by β). (4) Bob observes xxx + αααααααααatr, and suffers loss
‖f(xxx+αααααααααatr)− f(xxx)‖B . Note that Bob does not observe his
loss, as he never observes the unpoisoned xxx. We argue that
this framework and order of events is both relevant and real-
istic, as an attacker may determine Bob’s action and model
via outside channels.

In keeping with the assumption of a powerful attacker, we
assume that Bob does not know Alice’s target ttt, loss func-
tion ‖·‖A, or effort function g (·), but he does know her con-
straints (defining A). This allows our methods to be used
in evaluating the robustness of a system against bounded
attackers — Bob can evaluate the worth of limiting an at-
tacker’s abilities through e.g., legal or technological means.

1To avoid cluttered notation we assume only one test instance.
All methods described herein, however, extend easily to the case
where Bob receives a test set of more than one point.

2Note that the attacker’s target ttt may be absorbed into her loss
function, rather than remaining a separate variable. For the sake of
clarity, however, we keep both as explicit variables.

We further assume that Bob does not know the unpoisoned
value xxx (if he did, he could simply undo Alice’s attack). Bob
aims to minimize the deviation, as defined by his loss func-
tion ‖·‖B , between his prediction on the poisoned test set
and what he would have predicted on the unpoisoned set.
To do this, Bob selects some action β ∈ B. As an example:
by selecting action β ∈ B, Bob reduces Alice’s feasible set
of attacks to Aβ . See later section (Extensions) for a further
discussion of possible types of defense actions. Formally,
Bob seeks to solve the bi-level optimization problem:

argmin
β∈B

max
xxx,‖·‖A,g(·),ttt,αααααααααatr

∥∥f(xxx)− f(xxx+αααααααααatr)
∥∥
B

(2)

s.t.αααααααααatr = arg min
ααα∈Aβ

‖f(xxx+ααα)− ttt‖A + g (ααα)

To simplify, we exploit the duality between considering
all possible attractive attacks, and considering the one repul-
sive attack — the attack which explicitly aims to maximize
Bob’s loss. We define the following single-level optimiza-
tion problem, equivalent to (2):

argmin
β∈B

max
xxx∈Rd,ααα∈Aβ

‖f(xxx)− f(xxx+ααα)‖B (3)

In essence, we are creating a phantom adversary perform-
ing the optimal repulsive attack. We then have Bob defend
against this phantom Alice, thus limiting the potential effect
of any attacker. In doing so, we formulate the problem in
standard minimax form (a zero-sum game) rather than a bi-
level optimization problem. Rather than maximizing over all
possible targets, effort, and loss functions, we now maximize
over only the potential initial values xxx and Alice’s attack ααα.

We note that Bob and any particular attacker Alice are
engaged in a non-zero sum game. However, because Bob
defends against an unknown attacker, he considers the worst-
case attacker, against which he plays a zero-sum game. We
express this formally in the following theorem.

Theorem 1. The bi-level optimization problem (2) is equiv-
alent to standard minimax problem (3).

Proof. For a fixed β,xxx, let:

e1
def
= max
‖·‖A,g(·),ttt,αααααααααatr

∥∥f(xxx)− f(xxx+αααααααααatr)
∥∥
B

(4)

s.t.αααααααααatr = arg min
ααα∈Aβ

‖f(xxx+ααα)− ttt‖A + g (ααα)

e2
def
= max
ααα∈Aβ

‖f(xxx)− f(xxx+ααα)‖B (5)

We prove the statement by showing that e1 = e2 ∀β,xxx.
e1 ≤ e2: Note that e2 is the maximum over a relaxed ver-

sion of the maximization problem of e1. That is, removing
the constraint onαααααααααatr in (4) yields (5). Therefore e1 ≤ e2.
e1 ≥ e2: It is here that we construct the phantom attacker.

Let g̃ (·) def
= 0, t̃tt def

= f(xxx + αααrep), ‖·‖Ã
def
= ‖·‖B where αααrep is

the optimal repulsive attack:

αααrep def
= arg max

ααα∈Aβ
‖f(xxx)− f(xxx+ααα)‖B (6)



Pluggin in terms we have:

arg min
ααα∈Aβ

∥∥f(xxx+ααα)− t̃tt
∥∥
Ã
+ g̃ (ααα) (7)

= arg min
ααα∈Aβ

‖f(xxx+ααα)− f(xxx+αααrep)‖B + 0 (8)

= αααrep (9)

where the second equality holds by the fact that ‖0‖B = 0
and ‖·‖B ≥ 0. Let

ẽ1
def
= max

αααααααααatr

∥∥f(xxx)− f(xxx+αααααααααatr)
∥∥
B

(10)

s.t.αααααααααatr = arg min
ααα∈Aβ

∥∥f(xxx+ααα)− t̃tt
∥∥
Ã
+ g̃ (ααα)

= ‖f(xxx)− f(xxx+αααrep)‖B (11)
= e2 (12)

Note that in (4), we are maximizing over all possible
‖·‖A , g (·) , ttt,αααααααααatr whereas in (10) we use specific instantia-
tions. Therefore e1 ≥ ẽ1 = e2.

Linear Predictors
Thus far we have defined a framework (in (3)) for select-
ing an optimal defense action for a general predictor. In
what follows, we utilize this framework, and describe in-
stantiations of Alice and Bob inspired by real-world settings.
These instantiations result in tractable methods for determin-
ing Bob’s optimal defense action. For simplicity, we assume
that B is a finite set. In this setting, the task of determining
Bob’s optimal defense action reduces to computing the op-
timal repulsive attack — we evaluate the optimal repulsive
attack for each β ∈ B. Cases where Bob has a continuous or
countable infinite set of actions are left as future work.

When Bob’s loss is convex, it is often tractable to com-
pute Alice’s optimal attractive attack — that is, minimizing
a quadratic function subject to hard constraints. However,
even when Bob’s loss is convex, the task of computing an
optimal repulsive attack — maximizing a quadratic function
subject to hard constraints — is NP-Hard in general (e.g.,
under box constraints) (Nocedal and Wright 2006). We con-
sider a subset of all possible predictors (Bobs) and attackers
(Alices) so as to yield tractable methods for solving (3).

We consider the case where Y is continuous (e.g., regres-
sion) and let Bob be a (homogeneous) linear predictor. That
is, his prediction function may be written as:

f(xxx)
def
=Mxxx (13)

for some matrix M . In our running example of forecasting
Friday and Saturday’s stock price,

M (RE) =

[
−1 1.5
−1.5 1.25

]
,xxx =

[
xW
xT

]
(14)

We note that by linearity of f ,

αααrep (A,xxx, ‖·‖B)
def
= argmax

ααα∈A
‖f(xxx+ααα)− f(xxx)‖B

= argmax
ααα∈A
‖f(ααα)‖B (15)

def
= αααrep (A, ‖·‖B) (16)

That is, the optimal repulsive attack is independent of the
test instance. This results in (3) being equivalent to:

argmin
β∈B

max
ααα∈Aβ

‖f(ααα)‖B

= argmin
β∈B
‖f(αααrep (Aβ , ‖·‖B))‖B (17)

We let Bob’s loss be a generalization of mean squared
error — the squared Mahalanobis norm:

‖f(ααα)‖B
def
= ‖f(ααα)‖2W = f(ααα)>Wf(ααα) (18)

whereW = V >V is a positive-definite matrix. Note that we
do not require V to be unique. This both yields mathemat-
ical benefits, and is applicable in many real world settings.
Similarly, we consider the case where each of Bob’s actions
restricts Alice to select an attack from some ellipsoid. One
such setting where this is natural is when Alice is already
restricted to an ellipsoid (as in (Alfeld, Zhu, and Barford
2016) or when she has a constraint on the `2 norm of her poi-
son vector) and Bob’s actions each reweight the constraints
along some features. That is, each of Bob’s actions β ∈ B
defines Alice’s feasible attacks as:

Aβ
def
= {ααα : ‖ααα‖Cβ ≤ c} (19)

where ‖ααα‖Cβ =
√
(Gβααα)>Gβααα, Cβ = G>βGβ is a

positive-definite matrix and c ∈ R+.
Under these conditions, we may leverage the alignment

of Bob’s loss with Alice’s constraints (in that they are both
quadratic) to convert the optimization problem to that of
computing an induced matrix norm. By Theorem 2, we have:

αααrep def
= cG−1sss1 (20)

where sss1 is the right-singular vector corresponding to the
largest singular value of VMG−1β . Therefore αααrep may be
found by computing G−1 and the SVD of VMG−1. We
note that for large matrices, αααrep may be approximated by
applying the power method to (VMG−1)>(VMG−1).
Theorem 2. Letαααrep be the optimal repulsive attack against
a linear predictor Bob with prediction function f(xxx) =Mxxx
and (squared Mahalanobis) loss ‖f(ααα)‖B = ‖f(ααα)‖2W =
f(ααα)>Wf(ααα), where W = V >V is a positive definite ma-
trix, under the general ball constraints A = {ααα : ‖ααα‖C ≤
c} for the attacker, where C = G>G is a positive-definite
matrix and c ∈ R+ is a constant. Then the repulsive attack
as defined in (20) αααrep is equal to cG−1sss1 where sss1 is the
right-singular vector corresponding to the largest singular
value of VMG−1. Further, Bob’s loss induced byαααrep is the
squared spectral norm of cV MG−1.

Proof. Recall that the optimal repulsive attack is given by:
αααrep =argmax

ααα
‖f(ααα)‖B (21)

s.t. ‖ααα‖C ≤ c (22)
Note that:
‖f(ααα)‖B = ‖Mααα‖B = ‖Mααα‖2W (23)

= ααα>M>WMααα = ααα>M>V >VMααα (24)

= ‖VMααα‖22 = ‖VM G−1G︸ ︷︷ ︸
I

ααα‖22 (25)



Similarly:

‖ααα‖C = ‖Gααα‖2 (26)

This yields the following optimization problem:

αααrep =argmax
ααα
‖VMG−1Gααα‖22 (27)

s.t. ‖Gααα/c‖2 ≤ 1 (28)

We then perform a change of variables letting α̃αα = Gααα/c,
yielding3:

α̃ααrep =argmax
α̃αα
‖VMG−1α̃αα‖22 (29)

s.t. ‖α̃αα‖2 ≤ 1 (30)

The spectral norm (Horn and Johnson 2012) of a matrix Z
is defined as the induced 2-norm:

max
xxx
‖Zxxx‖2 (31)

s.t.‖xxx‖2 ≤ 1 (32)

and is equal to the largest singular value ofZ (with thexxx that
maximizes being the corresponding right singular vector).
Accounting for the change of variables, we have:

αααrep = cG−1α̃ααrep (33)

= cG−1sss1 (34)

where sss1 is the right singular vector corresponding to the
spectral norm of VMG−1.

Experiments
While the framework we have described is broadly applica-
ble to linear predictors, here we focus on the setting where
Bob is forecasting future values of a time series. Specifically,
we use a linear autoregressive model and recursive forecast-
ing strategy.

We select this setting based on the following motivations:

i. Data manipulation attacks are a real-world concern in
forecasting.

ii. Prior work (Alfeld, Zhu, and Barford 2016) has deter-
mined optimal (attractive) attacks against linear fore-
casters, specifically in the context of futures markets.

iii. Linear auto-regressive models for univariate time series
yield an intuitive understanding of coefficients. θi is the
weight of i steps ago when predicting the current value.

Bob uses the values for the last d time periods x−d, . . . , x−1
to forecast the next h values into the future (x̂0, . . . , x̂h−1).
He does so with an order-d linear autoregressive model:
xt =

∑d
i=1 θixt−i, and recursive forecasting strategy. With-

out loss of generality we assume h > d. We note that the
forecasting function may be written as:

f (xxx) =Mxxx
def
= ShZxxx (35)

3For any norm ‖ · ‖, matrix Z, vector xxx and constant k,
||Z (kxxx) || = ||kZxxx|| = k||Zxxx||

Where S is the h× h one-step matrix for model θθθ, and Z is
the h× d zero-padding matrix.

S
def
=

 I(h−1)×(h−1)000h

000>(h−d−1)×1
←
θθθ>

 , Z def
=

[
000(h−d)×d
Id×d

]

Where we denote the reverse of θθθ as
←
θθθ :
←
θ i = θd−i+1.

We assume that Alice’s original set A of feasible attacks
is an d-ellipsoid defined by {ααα : ‖ααα‖C ≤ c}. In defin-
ing Bob’s set of possible actions B, we consider performing
an inspection on a single time period. In the general setting
of prediction, this is akin to Bob independently verifying a
single feature. For simplicity of demonstration, we let one
time period be one day, and assume that on the day Bob per-
forms an inspection, Alice is unable to lie — on all other
days, Alice is bound by her original set of feasible attacks
A. Therefore Bob is restricting her to a (d − 1)-ellipsoid.
Recall that Bob’s actions may be defined in terms of G−1β
directly. For the action β corresponding to inspecting day i,
we let G−1β [i, j] = G−1β [j, i] = 0 for all j. This encodes
Alice’s inability to affect day i; her value for αααi is ignored.
Note that other, non-elliptical constraints may also be used,
which we discuss in a later section.

We use this construction of B to illustrate a subtle yet
powerful flexibility of our framework. Namely, the different
Aβ need not have the same dimension. Note that the defini-
tion of feasible attacks does not directly yield a set defined
by a Mahalanobis norm as in (19). To encode the restriction
that Alice cannot poison day i into the condition ‖·‖C ≤ c,
it must be that for all j, Cij = Cji = ∞. Therefore C is
not in the space of real matrices, and the definitions of G
andG−1 are unclear. However, in computing the optimal re-
pulsive attack, C is never used explicitly (nor is G) — only
G−1. By letting G−1ij = G−1ji = 0 for all j, we are able to
encode Alice’s inability to affect day i; whatever value she
selects for αααi will be ignored.

We illustrate the process of computing the optimal de-
fense action using our running example where Bob uses
Wednesday and Thursday to predict Friday and Saturday. In
this case, we find that inspecting Wednesday (meaning Bob
ensures that αW = 0) allows an optimal attack of αT = 1, for
which Bob suffers loss ≈ 3.8. In contrast, inspecting Thurs-
day allows an optimal attack αW = 1, and Bob’s loss is 3.25
— inspecting Thursday is the optimal defense.

For brevity, we consider only d = 5, h = 7 with spher-
ical loss (total squared deviation) for Bob and (unit) spher-
ical constraints for Alice for each experiment: W = C =
I, c = 1. Because computing the optimal repulsive attack is
accomplished via the SVD, runtime was not a concern — all
experiments ran quickly on consumer hardware. All figures
were made with Matplotlib (Hunter 2007) v 1.5.1.

Futures Markets Experiments
For ten different futures markets, we obtained4 daily settle
price data. For each, we estimated θθθ using Yule-Walker esti-

4Data is freely available from www.quandl.com. Identification
codes for individual datasets are provided in Figure 1.
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Figure 1: For each the 10 futures markets, we show Bob’s
loss against the worst case attack if he takes no defense ac-
tion (blue), a random defense action (green), and his optimal
defense action (red).

mation (Box, Jenkins, and Reinsel 2011) on approximately
one month’s worth of centered data — the exact dates used
varied across markets based on values available. We com-
pared Bob’s loss under the optimal defense, selecting a day
to inspect at random, and the null strategy where he takes no
action on each future market. We report loss under all three
strategies in Figure 1. Universally, taking the optimal de-
fense action considerably reduces Bob’s worst-case loss —
defending resulted in a 78% (Russian Ruble) to > 97% (Sil-
ver) reduction in loss compared to the null strategy across
the ten markets. Note that while we used c = 1 for these
experiments, the percentages are independent of c. By The-
orem 2 and the fact that for any matrix norm || · ||, constant k
and matrix M we have ||kM || = |k|||M ||, Bob’s loss scales
with c2. We note that on each futures market, the optimal
action was to lock down day −1 (the last day), and for each
learned model we find |θ1| > |θi|, i = 2, . . . , 5.

Synthetic Experiments
From the futures markets data, as well as our running ex-
ample, one may be tempted to form two natural hypothe-
ses: (a) The optimal action is always to select the day imax

corresponding to the maximal (in magnitude) θi: imax
def
=

− argmaxi |θi|. (b) The optimal action is always to select
the last day. Hypothesis (a) is supported by the observation
that Bob’s first prediction will be most affected by the value
αααimax , and subsequent predictions will in turn be affected by
the first. Hypothesis (b), in contrast, is motivated by the ob-
servation that while x−d directly affects only x̂0 (all later
predictions are affected by x−d only through x̂0), the value

x−1 directly affects predictions x̂0, . . . , x̂d−1.
To test these hypotheses, we run an additional experiment.

To emulate models that may be encountered in practice, we
construct 10,000 stationary models (Box, Jenkins, and Rein-
sel 2011) θθθ(1), . . . , θθθ(10000) by drawing each θθθ(i) iid from
a standard Gaussian, and then rejecting any non-stationary
models. We then determine the percentage of models on
which hypotheses (a) and (b) yield the optimal defense ac-
tion. We find that selecting the day corresponding with the
maximal |θi| (hypothesis (a)) is optimal only ≈ 55% of
the time. Selecting the last day (hypothesis (b)) is optimal
only ≈ 49% of the time. We further note that in ≈ 24% of
models, neither the last day nor the day imax was optimal,
whereas in ≈ 29% both were optimal (and in ≈ 31%, imax
was the last day —- that is, the two hypotheses suggested
the same day).

To further explore this behavior, we conduct a second ex-
periment where we focus specifically on the case of d = 2.
In following with our running example, we consider pre-
dicting Friday and Saturday using Wednesday and Thursday.
For (θ1, θ2) ∈ [−3, 3]2 with a resolution of 0.01, we deter-
mine the optimal action. In Figure 2 (top left) we show the
space of models, and we mark black each model for which
it is better to inspect Thursday (white indicates it is better to
inspect Wednesday). We observe a “bat-wing” effect, where
the boundary between sets of models with the same opti-
mal defense action is non-linear, and each set is non-convex.
Note that hypothesis (a) would result in the figure having an
“X” shape with the left and right portions black, and hypoth-
esis(b) would result in every point being black. While both
are suboptimal, we note that pictorially, they are reasonable
approximations to the true bat-wing structure (especially hy-
pothesis (a)).

We further investigate this by rerunning our experiment
for higher h (See Figure 2). Indeed, even in the relatively
simple case of spherical loss and constraints, the optimal ac-
tion is a complex function of the underlying model, and it is
unclear that any simple heuristic would perform optimally.
We note the symmetry in θθθ1, and how the structure varies
with the parity of h. Further investigation of these phenom-
ena is left as future work.

Extensions
We have described above only a subset of examples of our
framework. In this section we briefly describe extensions of
two forms: other types of defense actions and loss functions.

In what we have described thus far, Bob’s action defines
the feasible set of attacks for Alice. Our methods, however,
easily extend to other forms of B. Consider for example the
case where Bob’s actions are to select one of a set of poten-
tial models θθθ(1), . . . , θθθ(k). Here, Bob is not affecting A, but
we determine his best action similar to as before. For model
θθθ(i), let S(i) be the induced one-step matrix. The optimal
attack is then the solution to (20) with S replaced with S(i).

Common loss functions in time series forecasting are the
sum of absolute deviations, and maximum deviation (c.f.,
(Box, Jenkins, and Reinsel 2011; Alfeld and Barford 2014)).
In these cases, Bob’s loss function is `1 or `∞, respectively.
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Figure 2: AR(2) models for various h. Using Wednesday and
Thursday to forecast Friday and Saturday, the point (θ1, θ2)
being black indicates that it is better (for Bob) to inspect
Thursday’s value than Wednesday’s.

In such cases, we may still find the optimal repulsive attack
by computing an induced norm, so long as Alice is con-
strained in a similar way (‖ααα‖1 ≤ c or ‖ααα‖∞ ≤ c). For these
particular norms, the induced matrix norm is simple to find:
‖M‖1 is the maximum absolute row sum of M and ‖M‖∞
is the maximum absolute column sum (see (Horn and John-
son 2012) for a deeper discussion of matrix norms). Other
pairs of loss and constraint functions, including the cases
where they differ (e.g., Bob has a quadratic loss but Alice
has linear constraints), often lead to intractable optimization
problems, and their exploration is left as future work.

Related Work
The setting of so-called test-set attacks has been exam-
ined under a variety of titles. One such example is “eva-
sion attacks”, where the predictor performs binary classi-
fication (e.g., spam detection (Nelson et al. 2009; Lowd
and Meek 2005), intrusion detection (Tan, Killourhy, and
Maxion 2002)) and the attacker aims to have their bad
(e.g., “spam” or “intrusion”) sample classified as good
(e.g., “ham” or “normal traffic”). Neural Networks for com-
puter vision have been investigated in the context of secu-
rity (Goodfellow, Shlens, and Szegedy 2014; Papernot et
al. 2016). Robust Learning (Globerson and Roweis 2006;
El Ghaoui et al. 2003) considers the setting where a test
set is drawn from a distribution distinct from the training
set’s. The setting presented herein is distribution free, and an
example of covariate shift (Quionero-Candela et al. 2009).
(Goodfellow, Shlens, and Szegedy 2015) argues that linear-
ity in the models is a primary cause of attack vulnerability.

This theory is supported by our work and warrants further
investigation.

Separate from test-set attacks, training set attacks have
also been heavily explored. Support vector machines have
received special attention (Biggio, Nelson, and Laskov
2012; Biggio et al. 2014; Xiao et al. 2014; Xiao, Xiao,
and Eckert 2012). Adversarially corrupting training sets has
been put into the framework of machine teaching (Gold-
man, Rivest, and Schapire 1993; Goldman and Kearns 1995;
Zhu 2015). A general framework, similar to the one pre-
sented here was recently proposed for training-set attacks
against learners in (Mei and Zhu 2015).

A primary goal of this line of research is defense. We bor-
row from the framework and methodology used in (Alfeld,
Zhu, and Barford 2016), which derived optimal (attractive)
attacks against autoregressive forecasters. A separate line of
research has posed the problem of learning in the presence
of adversaries in game theoretic contexts (Liu and Chawla
2009; Brückner, Kanzow, and Scheffer 2012; Dalvi et al.
2004; Brückner and Scheffer 2009; 2011; Hardt et al. 2016;
Brückner and Scheffer 2011). (Dalvi et al. 2004) and (Letch-
ford and Vorobeychik 2013) phrase the interplay between
Alice and Bob as game similar to ours, and specifically ad-
dresses Bob’s defense strategy. They consider training-set
attacks against classifiers and find the Nash equilibrium of
the induced game.

Conclusions
The framework for our study is a predictor targeted by an
attacker which seeks to influence its predictions. Our goal
is to identify an optimal defense against such an attack. We
allowed for a powerful, knowledgeable attacker, yielding a
two player, non-zero sum Stackelberg game. By, in essence,
constructing a phantom attacker based on Bob’s loss func-
tion, we are able to phrase this interplay as a standard min-
imax formulation. We utilize our framework to identify the
optimal defense action for worst-case attacks against linear
predictors, which may be computed by reducing to the clas-
sicial problem of calculating an induced matrix norm.

We conducted empirical experiments on autoregressive
forecasting models trained on real-world futures markets
data, considering actions of inspecting (limiting the at-
tacker’s ability to lie) a single day. We found that the optimal
defense action reduces Bob’s loss by between 78 and 97%.
Through further investigation on synthetic data, we discov-
ered that the mapping from model to optimal defense action
is highly non-linear, and simple heuristics for selecting a de-
fense action fail in general. In future work, we plan to ap-
ply our methods to non-linear predictors, in hopes to derive
tractable methods of identifying optimal defense actions.
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